cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096748 Expansion of (1+x)^2/(1-x^2-x^4).

Original entry on oeis.org

1, 2, 2, 2, 3, 4, 5, 6, 8, 10, 13, 16, 21, 26, 34, 42, 55, 68, 89, 110, 144, 178, 233, 288, 377, 466, 610, 754, 987, 1220, 1597, 1974, 2584, 3194, 4181, 5168, 6765, 8362, 10946, 13530, 17711, 21892, 28657, 35422, 46368, 57314, 75025, 92736, 121393, 150050
Offset: 0

Views

Author

Paul Barry, Jul 07 2004

Keywords

Comments

The ratio a(n+1) / a(n) increasingly approximates two constants connected to the golden ratio phi = (1 + sqrt(5))/2: (phi+1)/2 = 1.30901699... = A239798 and (phi-1)*2 = 1.23606797... = A134972, according to whether n is odd or even. - Davide Rotondo, Jul 31 2020

Crossrefs

Cf. A134972 and A239798 (limiting ratios for a(n+1)/a(n)).

Programs

  • Mathematica
    CoefficientList[Series[(1+x)^2/(1-x^2-x^4),{x,0,50}],x] (* or *) LinearRecurrence[{0,1,0,1},{1,2,2,2},50] (* Harvey P. Dale, Jan 29 2012 *)

Formula

a(n) = a(n-2) + a(n-4).
a(n) = 2*F((n+1)/2)*(1-(-1)^n)/2 + F((n+4)/2)*(1+(-1)^n)/2.
a(2*n) = A000045(n+2); a(2*n+1) = 2*A000045(n+1).
a(n) = Sum_{k=0..n} binomial(floor((n-k)/2), floor(k/2)). - Paul Barry, Jul 24 2004
a(n) = A079977(n) + A079977(n-2) + 2*A079977(n-1). - R. J. Mathar, Jul 15 2013