A096751 Square table, read by antidiagonals, where T(n,k) equals the number of n-dimensional partitions of k.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 6, 5, 1, 1, 1, 5, 10, 13, 7, 1, 1, 1, 6, 15, 26, 24, 11, 1, 1, 1, 7, 21, 45, 59, 48, 15, 1, 1, 1, 8, 28, 71, 120, 140, 86, 22, 1, 1, 1, 9, 36, 105, 216, 326, 307, 160, 30, 1, 1, 1, 10, 45, 148, 357, 657, 835, 684, 282, 42, 1
Offset: 0
Examples
n-th row lists n-dimensional partitions; table begins with n=0: [1,1,1,1,1,1,1,1,1,1,1,1,...], [1,1,2,3,5,7,11,15,22,30,42,56,...], [1,1,3,6,13,24,48,86,160,282,500,859,...], [1,1,4,10,26,59,140,307,684,1464,3122,...], [1,1,5,15,45,120,326,835,2145,5345,...], [1,1,6,21,71,216,657,1907,5507,15522,...], [1,1,7,28,105,357,1197,3857,12300,38430,...], [1,1,8,36,148,554,2024,7134,24796,84625,...], [1,1,9,45,201,819,3231,12321,46209,170370,...], [1,1,10,55,265,1165,4927,20155,80920,...],... Array begins: k=0: k=1: k=2: k=3: k=4: k=5: k=6: k=7: k=8: n=0: 1 1 1 1 1 1 1 1 1 n=1: 1 1 2 3 5 7 11 15 22 n=2: 1 1 3 6 13 24 48 86 160 n=3: 1 1 4 10 26 59 140 307 684 n=4: 1 1 5 15 45 120 326 835 2145 n=5: 1 1 6 21 71 216 657 1907 5507 n=6: 1 1 7 28 105 357 1197 3857 12300 n=7: 1 1 8 36 148 554 2024 7134 24796 n=8: 1 1 9 45 201 819 3231 12321 46209 n=9: 1 1 10 55 265 1165 4927 20155 80920
References
- G. E. Andrews, The Theory of Partitions, Add.-Wes. 1976, pp. 189-197.
Links
- Pontus von Brömssen, Table of n, a(n) for n = 0..275 (first 23 antidiagonals)
- A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy]
Crossrefs
Programs
-
Mathematica
trans[x_]:=If[x=={},{},Transpose[x]]; levptns[n_,k_]:=If[k==1,IntegerPartitions[n],Join@@Table[Select[Tuples[levptns[#,k-1]&/@y],And@@(GreaterEqual@@@trans[Flatten/@(PadRight[#,ConstantArray[n,k-1]]&/@#)])&],{y,IntegerPartitions[n]}]]; Table[If[sum==k,1,Length[levptns[k,sum-k]]],{sum,0,10},{k,0,sum}] (* Gus Wiseman, Jan 27 2019 *)
Formula
T(0, n)=T(n, 0)=T(n, 1)=1 for n>=0.
Inverse binomial transforms of the columns is given by triangle A096806.
Comments