cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A096882 Expansion of g.f. (1 + 7*x)/(1 - 50*x^2).

Original entry on oeis.org

1, 7, 50, 350, 2500, 17500, 125000, 875000, 6250000, 43750000, 312500000, 2187500000, 15625000000, 109375000000, 781250000000, 5468750000000, 39062500000000, 273437500000000, 1953125000000000, 13671875000000000, 97656250000000000, 683593750000000000, 4882812500000000000
Offset: 0

Views

Author

Paul Barry, Jul 14 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[Binomial[Floor[n/2],k]7^(n-2k),{k,0,Floor[n/2]}]; Array[a,25,0] (* Stefano Spezia, Mar 31 2023 *)
    LinearRecurrence[{0,50},{1,7},30] (* Harvey P. Dale, Sep 20 2024 *)

Formula

a(n) = 6*a(n-1) + 7*a(n-2) + 50^floor((n-2)/2).
a(n) = Sum_{k=0..floor(n/2)} binomial(floor(n/2), k)*7^(n-2*k).
E.g.f.: cosh(5*sqrt(2)*x) + 7*sinh(5*sqrt(2)*x)/(5*sqrt(2)). - Stefano Spezia, Mar 31 2023

Extensions

More terms from Stefano Spezia, Mar 31 2023

A096883 Expansion of (1+10x)/(1-101x^2).

Original entry on oeis.org

1, 10, 101, 1010, 10201, 102010, 1030301, 10303010, 104060401, 1040604010, 10510100501, 105101005010, 1061520150601, 10615201506010, 107213535210701, 1072135352107010, 10828567056280801, 108285670562808010
Offset: 0

Views

Author

Paul Barry, Jul 14 2004

Keywords

Crossrefs

Formula

a(n)=9a(n-1)+10a(n-2)+101^floor((n-2)/2); a(n)=sum{k=0..floor(n/2), binomial(floor(n/2), k)10^(n-2k) }.
Showing 1-2 of 2 results.