A096884 a(n) = 101^n.
1, 101, 10201, 1030301, 104060401, 10510100501, 1061520150601, 107213535210701, 10828567056280801, 1093685272684360901, 110462212541120451001, 11156683466653165551101, 1126825030131969720661201, 113809328043328941786781301, 11494742132376223120464911401, 1160968955369998535166956051501
Offset: 0
Links
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (101).
Programs
-
Mathematica
Table[101^n, {n, 0, 15}] (* Ilya Gutkovskiy, Apr 10 2016 *)
-
PARI
a(n)=101^n \\ Charles R Greathouse IV, Oct 16 2015
-
PARI
my(x='x+O('x^20)); Vec(1/(1-101*x)) \\ Altug Alkan, Apr 10 2016
Formula
a(n) = Sum_{k=0..n} binomial(n, k)*10^(n-k).
a(n) = A096883(2n).
a(n) = 101^n. a(n) = Sum_{k=0..n,} binomial(n, k)*100^k. - Paul Barry, Aug 24 2004
G.f.: 1/(1-101*x). - Philippe Deléham, Nov 25 2008
E.g.f.: exp(101*x). - Ilya Gutkovskiy, Apr 10 2016
Comments