cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096916 Lesser prime factor of n-th product of two distinct primes.

Original entry on oeis.org

2, 2, 2, 3, 3, 2, 2, 3, 2, 5, 2, 3, 2, 3, 5, 3, 2, 2, 5, 3, 2, 7, 2, 5, 2, 3, 7, 3, 2, 5, 2, 3, 5, 2, 7, 2, 3, 3, 7, 2, 3, 2, 11, 5, 2, 5, 2, 3, 7, 2, 3, 2, 3, 5, 11, 2, 3, 2, 7, 5, 2, 11, 3, 2, 5, 7, 2, 3, 13, 2, 5, 3, 13, 3, 11, 2, 7, 2, 5, 3, 2, 2, 7, 3, 5, 2, 13, 7, 2, 3, 5, 3, 2, 11, 3, 17, 2, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 15 2004

Keywords

Comments

a(n)*A070647(n) = A006881(n); a(n) < A070647(n);
a(n) = A020639(A006881(n)).

Crossrefs

Programs

  • Haskell
    a096916 = a020639 . a006881 -- Reinhard Zumkeller, Sep 23 2011
    
  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1};f1[n_]:=Min[First/@FactorInteger[n]];f2[n_]:=Max[First/@FactorInteger[n]];lst={};Do[If[f[n],AppendTo[lst,f1[n]]],{n,0,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 10 2010 *)
  • PARI
    go(x)=my(v=List()); forprime(p=2, sqrtint(x\1), forprime(q=p+1, x\p, listput(v, [p*q,p]))); apply(v->v[2], vecsort(Vec(v),1)) \\ Charles R Greathouse IV, Sep 14 2015