A096919 Greatest prime factor of n-th product of 3 distinct primes.
5, 7, 11, 7, 13, 17, 7, 11, 19, 13, 23, 11, 11, 17, 29, 13, 31, 19, 13, 37, 23, 11, 17, 41, 17, 43, 19, 13, 47, 19, 13, 29, 31, 53, 23, 23, 59, 17, 61, 37, 17, 11, 19, 67, 29, 41, 19, 71, 13, 43, 31, 29, 73, 17, 13, 31, 47, 79, 23, 19, 83, 23, 37, 53, 89, 37, 17, 41, 97, 59
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[n_]:=Last/@FactorInteger[n]=={1,1,1};f1[n_]:=Min[First/@FactorInteger[n]];f2[n_]:=Max[First/@FactorInteger[n]];lst={};Do[If[f[n],AppendTo[lst,f2[n]]],{n,0,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 10 2010 *)
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot, primefactors def A096919(n): def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return max(primefactors(bisection(f))) # Chai Wah Wu, Aug 30 2024