A096938 McKay-Thompson series of class 60F for the Monster group.
1, 1, 1, 2, 2, 2, 3, 4, 4, 6, 7, 8, 10, 12, 14, 16, 19, 22, 26, 30, 35, 41, 47, 54, 62, 70, 80, 92, 104, 118, 135, 152, 171, 194, 218, 244, 275, 308, 344, 386, 432, 481, 537, 598, 664, 738, 819, 908, 1006, 1114, 1232, 1362, 1503, 1658, 1828, 2012, 2214, 2436, 2676
Offset: 0
Keywords
Examples
a(8)=4, the number of partitions into distinct parts that exclude the number 5 because we can write 8=7+1=6+2=4+3+1. T60F = 1/q + q^5 + q^11 + 2*q^17 + 2*q^23 + 2*q^29 + 3*q^35 + 4*q^41 +...
References
- T. M. Apostol, An Introduction to Analytic Number Theory, Springer-Verlag, NY, 1976
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- Cristina Ballantine and Brooke Feigon, Truncated Theta Series Related to the Jacobi Triple Product Identity, arXiv:2401.04019 [math.CO], 2024. See page 16.
- Nayandeep Deka Baruah and Abhishek Sarma, Arithmetic properties of 5-regular partitions into distinct parts, arXiv:2411.02978 [math.NT], 2024. See p. 2.
- N. Chair, Partition identities from Partial Supersymmetry, arXiv:hep-th/0409011, 2004.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 12.
- Donald Spector, Duality, partial supersymmetry and arithmetic number theory, arXiv:hep-th/9710002, 1997.
- Donald Spector, Duality, partial supersymmetry and arithmetic number theory, J. Math. Phys. Vol. 39, 1998, p. 1919.
- Index entries for sequences related to groups
- Index entries for McKay-Thompson series for Monster simple group
Crossrefs
Programs
-
Maple
series(product(1/(1-x^k+x^(2*k)-x^(3*k)+x^(4*k)),k+1..150),x=0,100);
-
Mathematica
CoefficientList[ Series[ Product[1/(1 - x^k + x^(2k) - x^(3k) + x^(4k)), {k, 70}], {x, 0, 60}], x] (* Robert G. Wilson v, Aug 19 2004 *) nmax = 50; CoefficientList[Series[Product[(1 + x^k) / (1 + x^(5*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *) QP = QPochhammer; s = QP[q^2]*(QP[q^5]/(QP[q]*QP[q^10])) + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 12 2015 *)
-
PARI
{a(n)=local(A); if(n<0,0, A=x*O(x^n); polcoeff( eta(x^2+A)*eta(x^5+A)/eta(x+A)/eta(x^10+A), n))} /* Michael Somos, Jan 18 2005 */
Formula
Euler transform of period 10 sequence [1, 0, 1, 0, 0, 0, 1, 0, 1, 0, ...]. - Vladeta Jovovic, Aug 19 2004
Expansion of q^(1/6)eta(q^2)eta(q^5)/(eta(q)eta(q^10)) in powers of q.
Given g.f. A(x), then B(x)=(A(x^6)/x)^2 satisfies 0=f(B(x), B(x^2)) where f(u, v)=(u^3+v^3)(1+uv)-uv(1-uv)^2. - Michael Somos, Jan 18 2005
G.f.: 1/product_{k>=1} (1-x^k+x^(2*k)-x^(3*k)+x^(4*k)) = 1/Product_{k>0} P10(x^k) where P10 is the 10th cyclotomic polynomial.
a(n) ~ exp(2*Pi*sqrt(n/15)) / (2 * 15^(1/4) * n^(3/4)) * (1 - (3*sqrt(15)/(16*Pi) + Pi/(6*sqrt(15))) / sqrt(n)). - Vaclav Kotesovec, Aug 31 2015, extended Jan 21 2017
Extensions
Definition corrected by Vladeta Jovovic, Aug 19 2004
More terms from Robert G. Wilson v, Aug 19 2004
Comments