cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096942 Fifth column of (1,5)-Pascal triangle A096940.

Original entry on oeis.org

5, 21, 55, 115, 210, 350, 546, 810, 1155, 1595, 2145, 2821, 3640, 4620, 5780, 7140, 8721, 10545, 12635, 15015, 17710, 20746, 24150, 27950, 32175, 36855, 42021, 47705, 53940, 60760, 68200, 76296, 85085, 94605, 104895, 115995, 127946, 140790, 154570, 169330, 185115
Offset: 0

Views

Author

Wolfdieter Lang, Jul 16 2004

Keywords

Comments

If Y is a 5-subset of an n-set X then, for n>=8, a(n-8) is the number of 4-subsets of X having at most one element in common with Y. - Milan Janjic, Dec 08 2007

Crossrefs

Fourth column: A096941; sixth column: A096943.

Programs

  • Magma
    [(n + 20)*Binomial(n + 3, 3) div 4: n in [0..50]]; // Vincenzo Librandi, Oct 01 2013
  • Mathematica
    Table[(n + 20) Binomial[n + 3, 3]/4, {n, 0, 100}]
    CoefficientList[Series[(5 - 4 x)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 01 2013 *)

Formula

a(n) = (n+20)*binomial(n+3, 3)/4 = 5*b(n) - 4*b(n-1), with b(n) = A000332(n+4) = binomial(n+4, 4).
G.f.: (5-4*x)/(1-x)^5.
a(n) = Sum_{k=1..n} (Sum_{i=1..k} i*(n-k+5)). - Wesley Ivan Hurt, Sep 26 2013