A096945 Eighth column of (1,5)-Pascal triangle A096940.
5, 36, 148, 456, 1170, 2640, 5412, 10296, 18447, 31460, 51480, 81328, 124644, 186048, 271320, 387600, 543609, 749892, 1019084, 1366200, 1808950, 2368080, 3067740, 3935880, 5004675, 6310980, 7896816, 9809888, 12104136, 14840320
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (8, -28, 56, -70, 56, -28, 8, -1).
Programs
-
Mathematica
CoefficientList[Series[(5-4*x)/(1-x)^8,{x,0,30}],x] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{5,36,148,456,1170,2640,5412,10296},30] (* Harvey P. Dale, Aug 16 2014 *)
Formula
G.f.: (5-4*x)/(1-x)^8.
a(n)= (n+35)*binomial(n+6, 6)/7 = 5*b(n)-4*b(n-1), with b(n):=A000580(n+7)=binomial(n+7, 7).
a(0)=5, a(1)=36, a(2)=148, a(3)=456, a(4)=1170, a(5)=2640, a(6)=5412, a(7)=10296, a(n)=8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)- 28*a(n-6)+ 8*a(n-7)-a(n-8). - Harvey P. Dale, Aug 16 2014
Comments