cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096960 a(n) = Sum_{0

Original entry on oeis.org

1, 32, 244, 1024, 3126, 7808, 16808, 32768, 59293, 100032, 161052, 249856, 371294, 537856, 762744, 1048576, 1419858, 1897376, 2476100, 3201024, 4101152, 5153664, 6436344, 7995392, 9768751, 11881408, 14408200, 17211392, 20511150
Offset: 1

Views

Author

Ralf Stephan, Jul 18 2004

Keywords

Examples

			G.f. = q + 32*q^2 + 244*q^3 + 1024*q^4 + 3126*q^5 + 7808*q^6 + 16808*q^7 + 32768*q^8 + ...
		

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma0(2), 6), 30) [2]; /* Michael Somos, Nov 30 2014 */
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ d^5 Boole[ OddQ[ n/d]], {d, Divisors[ n]}]]; (* Michael Somos, Jun 04 2013 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^4 + EllipticTheta[ 2, 0, q]^4) EllipticTheta[ 2, 0, q^(1/2)]^8 / 256, {q, 0, n}]; (* Michael Somos, Jun 04 2013 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * d^5))};
    
  • Sage
    ModularForms( Gamma0(2), 6, prec=33).gen(1).coefficients(30) # Michael Somos, Jun 04 2013
    

Formula

G.f.: Sum {k>0} k^5 * x^k / (1 - x^(2*k)).
From Amiram Eldar, Nov 01 2022: (Start)
Multiplicative with a(2^e) = 2^(5*e) and a(p^e) = (p^(5*e+5)-1)/(p^5-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^6, where c = 21*zeta(6)/128 = 0.166907... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-5)*(1-1/2^s). - Amiram Eldar, Jan 08 2023