A007331 Fourier coefficients of E_{infinity,4}.
0, 1, 8, 28, 64, 126, 224, 344, 512, 757, 1008, 1332, 1792, 2198, 2752, 3528, 4096, 4914, 6056, 6860, 8064, 9632, 10656, 12168, 14336, 15751, 17584, 20440, 22016, 24390, 28224, 29792, 32768, 37296, 39312, 43344, 48448, 50654, 54880, 61544, 64512
Offset: 0
Examples
G.f. = q + 8*q^2 + 28*q^3 + 64*q^4 + 126*q^5 + 224*q^6 + 344*q^7 + 512*q^8 + ...
References
- B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 139, Ex (ii).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1001 from T. D. Noe)
- B. Brent, Quadratic Minima and Modular Forms, Experimental Mathematics, v.7 no.3, 257-274.
- H. H. Chan and C. Krattenthaler, Recent progress in the study of representations of integers as sums of squares, arXiv:math/0407061 [math.NT], 2004.
- J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, p. 187.
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- Masao Koike, Modular forms on non-compact arithmetic triangle groups, Unpublished manuscript [Extensively annotated with OEIS A-numbers by N. J. A. Sloane, Feb 14 2021. I wrote 2005 on the first page but the internal evidence suggests 1997.]
- K. Ono, S. Robins and P. T. Wahl, On the representation of integers as sums of triangular numbers, Aequationes mathematicae, August 1995, Volume 50, Issue 1-2, pp 73-94. Theorem 5.
- H. Rosengren, Sums of triangular numbers from the Frobenius determinant, arXiv:math/0504272 [math.NT], 2005.
- Index entries for sequences mentioned by Glaisher.
Crossrefs
Programs
-
Magma
Basis( ModularForms( Gamma0(2), 4), 10) [2]; /* Michael Somos, May 27 2014 */
-
Maple
nmax:=40: seq(coeff(series(x*(product((1-x^k)^8*(1+x^k)^16, k=1..nmax)), x, n+1), x, n), n=0..nmax); # Vaclav Kotesovec, Oct 14 2015
-
Mathematica
Prepend[Table[Plus @@ (Select[Divisors[k + 1], OddQ[(k + 1)/#] &]^3), {k, 0, 39}], 0] (* Ant King, Dec 04 2010 *) a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^(1/2)]^8 / 256, {q, 0, n}]; (* Michael Somos, Jun 04 2013 *) a[ n_] := If[ n < 1, 0, Sum[ d^3 Boole[ OddQ[ n/d]], {d, Divisors[ n]}]]; (* Michael Somos, Jun 04 2013 *) f[n_] := Total[(2n/Select[ Divisors[ 2n], Mod[#, 4] == 2 &])^3]; Flatten[{0, Array[f, 40] }] (* Robert G. Wilson v, Mar 26 2015 *) nmax=60; CoefficientList[Series[x*Product[(1-x^k)^8 * (1+x^k)^16, {k,1,nmax}],{x,0,nmax}], x] (* Vaclav Kotesovec, Oct 14 2015 *) QP = QPochhammer; s = q * (QP[-1, q]/2)^16 * QP[q]^8 + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Dec 01 2015, adapted from PARI *)
-
PARI
{a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * d^3))}; /* Michael Somos, May 31 2005 */
-
PARI
{a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 / eta(x + A))^8, n))}; /* Michael Somos, May 31 2005 */
-
PARI
a(n)=my(e=valuation(n,2)); 8^e * sigma(n/2^e, 3) \\ Charles R Greathouse IV, Sep 09 2014
-
Python
from sympy import divisors def a(n): return 0 if n == 0 else sum(((n//d)%2)*d**3 for d in divisors(n)) print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 24 2017
-
Sage
ModularForms( Gamma0(2), 4, prec=33).1; # Michael Somos, Jun 04 2013
Formula
G.f.: q * Product_{k>=1} (1-q^k)^8 * (1+q^k)^16. - corrected by Vaclav Kotesovec, Oct 14 2015
a(n) = Sum_{0
G.f.: Sum_{n>0} n^3*x^n/(1-x^(2*n)). - Vladeta Jovovic, Oct 24 2002
Expansion of Jacobi theta constant theta_2(q)^8 / 256 in powers of q.
Expansion of eta(q^2)^16 / eta(q)^8 in powers of q. - Michael Somos, May 31 2005
Expansion of x * psi(x)^8 in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Jan 15 2012
Expansion of (Q(x) - Q(x^2)) / 240 in powers of x where Q() is a Ramanujan Lambert series. - Michael Somos, Jan 15 2012
Expansion of E_{gamma,2}^2 * E_{0,4} in powers of q.
Euler transform of period 2 sequence [8, -8, ...]. - Michael Somos, May 31 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 - u^2*w + 16*u*v*w - 32*v^2*w + 256*v*w^2. - Michael Somos, May 31 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (2 t)) = 16^(-1) (t / i)^4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A035016. - Michael Somos, Jan 11 2009
Multiplicative with a(2^e) = 2^(3e), a(p^e) = (p^(3(e+1))-1)/(p^3-1). - Mitch Harris, Jun 13 2005
Dirichlet convolution of A154955 by A001158. Dirichlet g.f. zeta(s)*zeta(s-3)*(1-1/2^s). - R. J. Mathar, Mar 31 2011
A002408(n) = -(-1)^n * a(n).
Convolution square of A008438. - Michael Somos, Jun 15 2014
a(1) = 1, a(n) = (8/(n-1))*Sum_{k=1..n-1} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
Sum_{k=1..n} a(k) ~ c * n^4, where c = Pi^4/384 = 0.253669... (A222072). - Amiram Eldar, Oct 19 2022
Extensions
Additional comments from Barry Brent (barryb(AT)primenet.com)
Wrong Maple program replaced by Vaclav Kotesovec, Oct 14 2015
a(0)=0 prepended by Vaclav Kotesovec, Oct 14 2015
A076577 Sum of squares of divisors d of n such that n/d is odd.
1, 4, 10, 16, 26, 40, 50, 64, 91, 104, 122, 160, 170, 200, 260, 256, 290, 364, 362, 416, 500, 488, 530, 640, 651, 680, 820, 800, 842, 1040, 962, 1024, 1220, 1160, 1300, 1456, 1370, 1448, 1700, 1664, 1682, 2000, 1850, 1952, 2366, 2120, 2210, 2560, 2451, 2604
Offset: 1
Examples
G.f. = x + 4*x^2 + 10*x^3 + 16*x^4 + 26*x^5 + 40*x^6 + 50*x^7 + 64*x^8 + ...
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- Index entries for sequences mentioned by Glaisher
Crossrefs
Programs
-
Maple
a:= n -> mul(`if`(t[1]=2, 2^(2*t[2]), (t[1]^(2*(1+t[2]))-1)/(t[1]^2-1)),t=ifactors(n)[2]): map(a, [$1..100]); # Robert Israel, Jul 05 2016
-
Mathematica
a[ n_] := If[ n < 1, 0, Sum[ d^2 Mod[ n/d, 2], {d, Divisors @ n}]]; (* Michael Somos, Jun 09 2014 *) Table[CoefficientList[Series[-Log[Product[(x^k - 1)^k/(x^k + 1)^k, {k, 1, 80}]]/2, {x, 0, 80}], x][[n + 1]] n, {n, 1, 80}] (* Benedict W. J. Irwin, Jul 05 2016 *) f[2, e_] := 4^e; f[p_, e_] := (p^(2*e + 2) - 1)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2020 *)
-
PARI
a(n) = sumdiv(n, d, d^2*((n/d) % 2)); \\ Michel Marcus, Jun 09 2014
Formula
G.f.: Sum_{m>0} m^2*x^m/(1-x^(2*m)). More generally, if b(n, k) is sum of k-th powers of divisors d of n such that n/d is odd then b(2n, k) = sigma_k(2n)-sigma_k(n), b(2n+1, k) = sigma_k(2n+1), where sigma_k(n) is sum of k-th powers of divisors of n. G.f. for b(n, k): Sum_{m>0} m^k*x^m/(1-x^(2*m)).
b(n, k) is multiplicative: b(2^e, k) = 2^(k*e), b(p^e, k) = (p^(ke+k)-1)/(p^k-1) for an odd prime p.
a(2*n) = sigma_2(2*n)-sigma_2(n), a(2*n+1) = sigma_2(2*n+1), where sigma_2(n) is sum of squares of divisors of n (cf. A001157).
b(n, k) = (sigma_k(2n)-sigma_k(n))/2^k. - Vladeta Jovovic, Oct 06 2003
Dirichlet g.f.: zeta(s)*(1-1/2^s)*zeta(s-2). - Geoffrey Critzer, Mar 28 2015
L.g.f.: -log(Product_{ k>0 } (x^k-1)^k/(x^k+1)^k)/2 = Sum_{ n>0 } (a(n)/n)*x^n. - Benedict W. J. Irwin, Jul 05 2016
Sum_{k=1..n} a(k) ~ 7*Zeta(3)*n^3 / 24. - Vaclav Kotesovec, Feb 08 2019
A206624 G.f.: Product_{n>0} ( (1+x^n)/(1-x^n) )^(n^4).
1, 2, 34, 228, 1414, 8872, 52876, 301136, 1662614, 8929406, 46738920, 239036116, 1197187780, 5882369976, 28397283056, 134864166352, 630819797174, 2908948327780, 13236421303742, 59477002686404, 264104800719672, 1159649708139680, 5037895127964316
Offset: 0
Keywords
Comments
In general, for m >= 0, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^(k^m), then a(n) ~ ((2^(m+2)-1) * Gamma(m+2) * Zeta(m+2) / (2^(2*m+3) * n))^((1-2*Zeta(-m))/(2*m+4)) * exp((m+2)/(m+1) * ((2^(m+2)-1) * n^(m+1) * Gamma(m+2) * Zeta(m+2) / 2^(m+1))^(1/(m+2)) + Zeta'(-m)) / sqrt((m+2)*Pi*n). - Vaclav Kotesovec, Aug 19 2015
If m is even and m >= 2, then can be simplified as: a(n) ~ ((2^(m+2)-1) * Gamma(m+2) * Zeta(m+2) / (2^(2*m+3) * n))^(1/(2*m+4)) * exp((m+2)/(m+1) * ((2^(m+2)-1) * n^(m+1) * Gamma(m+2) * Zeta(m+2) / 2^(m+1))^(1/(m+2)) + (-1)^(m/2) * Gamma(m+1) * Zeta(m+1) / (2^(m+1) * Pi^m)) / sqrt((m+2)*Pi*n). - Vaclav Kotesovec, Aug 19 2015
Examples
G.f.: A(x) = 1 + 2*x + 18*x^2 + 88*x^3 + 398*x^4 + 1768*x^5 + 7508*x^6 +... where A(x) = (1+x)/(1-x) * (1+x^2)^16/(1-x^2)^16 * (1+x^3)^81/(1-x^3)^81 *... Also, A(x) = Euler transform of [2,31,162,496,1250,2511,4802,7936,...]: A(x) = 1/((1-x)^2*(1-x^2)^31*(1-x^3)^162*(1-x^4)^496*(1-x^5)^1250*(1-x^6)^2511*...).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..2916 (terms 0..1000 from Vaclav Kotesovec)
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 23.
Programs
-
Mathematica
nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k^4), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2015 *)
-
PARI
{a(n)=polcoeff(prod(m=1,n+1,((1+x^m)/(1-x^m+x*O(x^n)))^(m^4)),n)}
-
PARI
{a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m, 5)-sigma(m, 5))/16*x^m/m)+x*O(x^n)), n)}
-
PARI
{a(n)=local(InvEulerGF=x*(2+31*x+152*x^2+341*x^3+460*x^4+341*x^5+152*x^6+31*x^7+2*x^8)/(1-x^2+x*O(x^n))^5); polcoeff(1/prod(k=1,n,(1-x^k+x*O(x^n))^polcoeff(InvEulerGF,k)),n)} for(n=0,30,print1(a(n),", "))
Formula
G.f.: exp( Sum_{n>=1} (sigma_5(2*n) - sigma_5(n))/16 * x^n/n ), where sigma_5(n) is the sum of 5th powers of divisors of n (A001160).
Inverse Euler transform has g.f.: x*(2 + 31*x + 152*x^2 + 341*x^3 + 460*x^4 + 341*x^5 + 152*x^6 + 31*x^7 + 2*x^8)/(1-x^2)^5.
a(n) ~ exp(3*2^(2/3)*Pi*n^(5/6)/5 + 3*Zeta(5)/(4*Pi^4)) / (2^(7/6) * 3^(1/2) * n^(7/12)), where Zeta(5) = A013663. - Vaclav Kotesovec, Aug 19 2015
a(0) = 1, a(n) = (2/n)*Sum_{k=1..n} A096960(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 30 2017
A096963
a(n) = Sum {0
1, 2048, 177148, 4194304, 48828126, 362799104, 1977326744, 8589934592, 31381236757, 100000002048, 285311670612, 743012564992, 1792160394038, 4049565171712, 8649804864648, 17592186044416, 34271896307634
Offset: 1
Comments
This is the member k=11 of the k-family sigma^#_k(n) := Sum {0
This notation appears in the Ono et al. link, Theorem 5 (with k=3, see A007331) and Theorem 8 (with k=11). - Wolfdieter Lang, Jan 13 2017
Examples
G.f. = q + 2048*q^2 + 177148*q^3 + 4194304*q^4 + 48828126*q^5 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- H. H. Chan and C. Krattenthaler, Recent progress in the study of representations of integers as sums of squares, arXiv:math/0407061 [math.NT], 2004.
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- K. Ono, S. Robins and P. T. Wahl, On the representation of integers as sums of triangular numbers, Aequationes mathematicae, August 1995, Volume 50, Issue 1-2, pp 73-94, Case 24, Theorem 8.
- Index entries for sequences mentioned by Glaisher.
Programs
-
Magma
A := Basis( ModularForms( Gamma0(2), 12), 18); A[2] + 2048*A[3] + 177148*A[4]; /* Michael Somos, Nov 30 2014 */
-
Mathematica
a[ n_] := If[ n < 1, 0, Sum[ d^11 Boole[ OddQ[ n/d]], {d, Divisors[ n]}]]; (* Michael Somos, Nov 30 2014 *) a[ n_] := SeriesCoefficient[ With[{u1 = QPochhammer[ q]^8, u4 = QPochhammer[ q^4]^8}, q (u1^4 + 2072 q u4 u1^3 + 210048 q^2 u4^2 u1^2 + 5660672 q^3 u4^3 u1 + 45285376 q^4 u4^4) / u1 ], {q, 0, n}]; (* Michael Somos, Nov 30 2014 *)
-
PARI
{a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * d^11))}; /* Michael Somos, Nov 30 2014 */
-
Sage
ModularForms( Gamma0(2), 12, prec=18).3; # Michael Somos, Nov 30 2014
Formula
G.f.: Sum_{n>0} n^11 * x^n / (1 - x^(2*n)).
a(n) = Sum {0
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 2^(11*e) and a(p^e) = (p^(11*e+11)-1)/(p^11-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^12, where c = 1365*zeta(12)/16384 = 691*Pi^12/7664025600 = 0.0833334904... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-11)*(1-1/2^s). - Amiram Eldar, Jan 09 2023
A096961
a(n) = Sum_{0
1, 128, 2188, 16384, 78126, 280064, 823544, 2097152, 4785157, 10000128, 19487172, 35848192, 62748518, 105413632, 170939688, 268435456, 410338674, 612500096, 893871740, 1280016384, 1801914272, 2494358016, 3404825448
Offset: 1
Examples
G.f. = q + 128*q^2 + 2188*q^3 + 16384*q^4 + 78126*q^5 + 280064*q^6 + 823544*q^7 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- H. H. Chan and C. Krattenthaler, Recent progress in the study of representations of integers as sums of squares, arXiv:math/0407061 [math.NT], 2004.
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- Index entries for sequences mentioned by Glaisher.
Programs
-
Magma
A := Basis( ModularForms( Gamma0(2), 8), 24); A[2] + 128*A[3]; /* Michael Somos, Nov 30 2014 */
-
Mathematica
a[ n_] := SeriesCoefficient[ With[{u1 = QPochhammer[ q]^8, u2 = QPochhammer[ q^2]^8, u4 = QPochhammer[ q^4]^8}, q u2 (u1^2 + 136 q u4 u1 + 2176 q^2 u4^2 ) / u1], {q, 0, n}]; (* Michael Somos, Jun 04 2013 *) a[ n_] := If[ n < 1, 0, Sum[ d^7 Mod[ n/d, 2], {d, Divisors[ n]}]]; (* Michael Somos, Jan 09 2015 *)
-
PARI
{a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * d^7))};
-
Sage
ModularForms( Gamma0(2), 8, prec=24).2; # Michael Somos, Jun 04 2013
Formula
G.f.: Sum_{k>0} k^7 * x^k / (1 - x^(2*k)).
Expansion of (E_8(q) - E_8(q^2)) / 480 in powers of q where E_8() is an Eisenstein series (A008410). - Michael Somos, Jan 09 2015
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 2^(7*e) and a(p^e) = (p^(7*e+7)-1)/(p^7-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^8, where c = 255*zeta(8)/2048 = 17*Pi^8/1290240 = 0.125019... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-7)*(1-1/2^s). - Amiram Eldar, Jan 09 2023
A096962
a(n) = Sum_{0
1, 512, 19684, 262144, 1953126, 10078208, 40353608, 134217728, 387440173, 1000000512, 2357947692, 5160042496, 10604499374, 20661047296, 38445332184, 68719476736, 118587876498, 198369368576, 322687697780, 512000262144
Offset: 1
Examples
G.f. = q + 512*q^2 + 19684*q^3 + 262144*q^4 + 1953126*q^5 + 10078208*q^6 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- H. H. Chan and C. Krattenthaler, Recent progress in the study of representations of integers as sums of squares, arXiv:math/0407061 [math.NT], 2004.
Programs
-
Magma
A := Basis( ModularForms( Gamma0(2), 10), 21); A[2] + 512*A[3]; /* Michael Somos, Aug 25 2014 */
-
Mathematica
a[ n_] := If[ n < 1, 0, Sum[ d^9 Boole[ OddQ[ n/d]], {d, Divisors[ n]}]]; (* Michael Somos, Jun 04 2013 *) a[ n_] := SeriesCoefficient[ With[{u1 = QPochhammer[ q]^8, u2 = QPochhammer[ q^2]^4, u4 = QPochhammer[ q^4]^8}, q u2 (u1 + 32 q u4) (u1^2 + 496 q u4 u1 + 7936 q^2 u4^2 ) / u1], {q, 0, n}]; (* Michael Somos, Jun 04 2013 *)
-
PARI
{a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * d^9))}; /* Michael Somos, Jun 04 2013 */
-
PARI
{a(n) = local(A, A1, A2, A4); if( n<1, 0, n--; A = x * O(x^n); A1 = eta(x + A)^8; A2 = eta(x^2 + A)^4; A4 = eta(x^4 + A)^8; polcoeff( A2 * (A1 + 32*x * A4) * (A1^2 + 496*x * A1*A4 + 7936*x^2 * A4^2) / A1, n))}; /* Michael Somos, Jun 04 2013 */
-
Sage
ModularForms( Gamma0(2), 10, prec=33).2; # Michael Somos, Jun 04 2013
Formula
G.f.: Sum_{k>0} k^9 * x^k / (1 - x^(2*k)).
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 2^(9*e) and a(p^e) = (p^(9*e+9)-1)/(p^9-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^10, where c = 1023*zeta(10)/10240 = 31*Pi^10/29030400 = 0.100001704136... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-9)*(1-1/2^s). - Amiram Eldar, Jan 09 2023
A285989
a(0) = 0, a(n) = Sum_{0 0.
0, 1, 16, 82, 256, 626, 1312, 2402, 4096, 6643, 10016, 14642, 20992, 28562, 38432, 51332, 65536, 83522, 106288, 130322, 160256, 196964, 234272, 279842, 335872, 391251, 456992, 538084, 614912, 707282, 821312, 923522, 1048576, 1200644, 1336352, 1503652, 1700608
Offset: 0
Comments
Multiplicative because this sequence is the Dirichlet convolution of A000035 and A000583 which are both multiplicative. - Andrew Howroyd, Aug 05 2018
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- Index entries for sequences mentioned by Glaisher.
Crossrefs
Programs
-
Maple
f:= n -> add((n/d)^4, d = numtheory:-divisors(n/2^padic:-ordp(n,2))); # Robert Israel, Apr 30 2017
-
Mathematica
{0}~Join~Table[DivisorSum[n, Mod[#, 2] (n/#)^4 &], {n, 36}] (* Michael De Vlieger, Aug 05 2018 *)
-
PARI
a(n)={sumdiv(n, d, (d%2)*(n/d)^4)} \\ Andrew Howroyd, Aug 05 2018
Formula
From Amiram Eldar, Nov 01 2022: (Start)
Multiplicative with a(2^e) = 2^(4*e) and a(p^e) = (p^(4*e+4)-1)/(p^4-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^5, where c = 31*zeta(5)/160 = 0.200904... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-4)*(1-1/2^s). - Amiram Eldar, Jan 08 2023
A322082 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n, n/d odd} d^k.
1, 1, 1, 1, 2, 2, 1, 4, 4, 1, 1, 8, 10, 4, 2, 1, 16, 28, 16, 6, 2, 1, 32, 82, 64, 26, 8, 2, 1, 64, 244, 256, 126, 40, 8, 1, 1, 128, 730, 1024, 626, 224, 50, 8, 3, 1, 256, 2188, 4096, 3126, 1312, 344, 64, 13, 2, 1, 512, 6562, 16384, 15626, 7808, 2402, 512, 91, 12, 2, 1, 1024, 19684, 65536, 78126, 46720, 16808, 4096, 757, 104, 12, 2
Offset: 1
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 1, 2, 4, 8, 16, 32, ... 2, 4, 10, 28, 82, 244, ... 1, 4, 16, 64, 256, 1024, ... 2, 6, 26, 126, 626, 3126, ... 2, 8, 40, 224, 1312, 7808, ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 antidiagonals)
- Index entries for sequences mentioned by Glaisher
Crossrefs
Programs
-
Mathematica
Table[Function[k, Sum[Boole[OddQ[n/d]] d^k, {d, Divisors[n]}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten Table[Function[k, SeriesCoefficient[Sum[j^k x^j/(1 - x^(2 j)), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
-
PARI
T(n,k)={sumdiv(n, d, if(n/d%2, d^k))} for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018
Formula
G.f. of column k: Sum_{j>=1} j^k*x^j/(1 - x^(2*j)).
A285991 Expansion of Product_{n>0} ((1-x^n)/(1+x^n))^(n^4) in powers of x.
1, -2, -30, -100, 262, 3672, 13836, -80, -264810, -1421438, -3019032, 7630764, 89648580, 358974280, 548677872, -2390377936, -20531491146, -74635378020, -110275527170, 425036176572, 3669041188152, 13597190512480, 23995331740700, -45340748171760
Offset: 0
Keywords
Crossrefs
Formula
a(0) = 1, a(n) = -(2/n)*Sum_{k=1..n} A096960(k)*a(n-k) for n > 0.
G.f.: exp(Sum_{k>=1} (sigma_5(k) - sigma_5(2*k))*x^k/(16*k)). - Ilya Gutkovskiy, Apr 14 2019
Comments