cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A076577 Sum of squares of divisors d of n such that n/d is odd.

Original entry on oeis.org

1, 4, 10, 16, 26, 40, 50, 64, 91, 104, 122, 160, 170, 200, 260, 256, 290, 364, 362, 416, 500, 488, 530, 640, 651, 680, 820, 800, 842, 1040, 962, 1024, 1220, 1160, 1300, 1456, 1370, 1448, 1700, 1664, 1682, 2000, 1850, 1952, 2366, 2120, 2210, 2560, 2451, 2604
Offset: 1

Views

Author

Vladeta Jovovic, Oct 19 2002

Keywords

Examples

			G.f. = x + 4*x^2 + 10*x^3 + 16*x^4 + 26*x^5 + 40*x^6 + 50*x^7 + 64*x^8 + ...
		

Crossrefs

Programs

  • Maple
    a:= n -> mul(`if`(t[1]=2, 2^(2*t[2]),
         (t[1]^(2*(1+t[2]))-1)/(t[1]^2-1)),t=ifactors(n)[2]):
    map(a, [$1..100]); # Robert Israel, Jul 05 2016
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ d^2 Mod[ n/d, 2], {d, Divisors @ n}]]; (* Michael Somos, Jun 09 2014 *)
    Table[CoefficientList[Series[-Log[Product[(x^k - 1)^k/(x^k + 1)^k, {k, 1, 80}]]/2, {x, 0, 80}], x][[n + 1]] n, {n, 1, 80}] (* Benedict W. J. Irwin, Jul 05 2016 *)
    f[2, e_] := 4^e; f[p_, e_] := (p^(2*e + 2) - 1)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2020 *)
  • PARI
    a(n) = sumdiv(n, d, d^2*((n/d) % 2)); \\ Michel Marcus, Jun 09 2014

Formula

G.f.: Sum_{m>0} m^2*x^m/(1-x^(2*m)). More generally, if b(n, k) is sum of k-th powers of divisors d of n such that n/d is odd then b(2n, k) = sigma_k(2n)-sigma_k(n), b(2n+1, k) = sigma_k(2n+1), where sigma_k(n) is sum of k-th powers of divisors of n. G.f. for b(n, k): Sum_{m>0} m^k*x^m/(1-x^(2*m)).
b(n, k) is multiplicative: b(2^e, k) = 2^(k*e), b(p^e, k) = (p^(ke+k)-1)/(p^k-1) for an odd prime p.
a(2*n) = sigma_2(2*n)-sigma_2(n), a(2*n+1) = sigma_2(2*n+1), where sigma_2(n) is sum of squares of divisors of n (cf. A001157).
b(n, k) = (sigma_k(2n)-sigma_k(n))/2^k. - Vladeta Jovovic, Oct 06 2003
Dirichlet g.f.: zeta(s)*(1-1/2^s)*zeta(s-2). - Geoffrey Critzer, Mar 28 2015
L.g.f.: -log(Product_{ k>0 } (x^k-1)^k/(x^k+1)^k)/2 = Sum_{ n>0 } (a(n)/n)*x^n. - Benedict W. J. Irwin, Jul 05 2016
Sum_{k=1..n} a(k) ~ 7*Zeta(3)*n^3 / 24. - Vaclav Kotesovec, Feb 08 2019

A050463 a(n) = Sum_{d|n, n/d=1 mod 4} d^4.

Original entry on oeis.org

1, 16, 81, 256, 626, 1296, 2401, 4096, 6562, 10016, 14641, 20736, 28562, 38416, 50706, 65536, 83522, 104992, 130321, 160256, 194482, 234256, 279841, 331776, 391251, 456992, 531522, 614656, 707282, 811296, 923521, 1048576, 1185922
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^4 &, Mod[n/#, 4] == 1 &]; Array[a, 50] (* Amiram Eldar, Jul 08 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d % 4 == 1) * d^4); \\ Amiram Eldar, Nov 05 2023

Formula

From Amiram Eldar, Nov 05 2023: (Start)
a(n) = A285989(n) - A050467(n).
a(n) = A050468(n) + A050467(n).
a(n) = (A050468(n) + A285989(n))/2.
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = 5*Pi^5/3072 + 31*zeta(5)/64 = 1.000340795436113... . (End)

Extensions

Offset changed from 0 to 1 by Seiichi Manyama, Jul 08 2023

A050467 a(n) = Sum_{d|n, n/d=3 mod 4} d^4.

Original entry on oeis.org

0, 0, 1, 0, 0, 16, 1, 0, 81, 0, 1, 256, 0, 16, 626, 0, 0, 1296, 1, 0, 2482, 16, 1, 4096, 0, 0, 6562, 256, 0, 10016, 1, 0, 14722, 0, 626, 20736, 0, 16, 28562, 0, 0, 39712, 1, 256, 50706, 16, 1, 65536, 2401, 0, 83522, 0, 0, 104992, 626, 4096, 130402
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[Divisors[n],Mod[n/#,4]==3&]^4],{n,60}] (* Harvey P. Dale, Jun 10 2023 *)
    a[n_] := DivisorSum[n, #^4 &, Mod[n/#, 4] == 3 &]; Array[a, 50] (* Amiram Eldar, Nov 05 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d % 4 == 3) * d^4); \\ Amiram Eldar, Nov 05 2023

Formula

From Amiram Eldar, Nov 05 2023: (Start)
a(n) = A285989(n) - A050463(n).
a(n) = A050463(n) - A050468(n).
a(n) = (A285989(n) - A050468(n))/2.
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = 31*zeta(5)/64 - 5*Pi^5/3072 = 0.00418296735902... . (End)

Extensions

Offset corrected by Amiram Eldar, Nov 05 2023

A285990 Expansion of Product_{n>0} ((1-x^n)/(1+x^n))^(n^3) in powers of x.

Original entry on oeis.org

1, -2, -14, -24, 78, 536, 1236, -308, -12322, -45218, -73680, 76144, 872868, 2833904, 4612952, -2467592, -42205746, -147191388, -285572658, -127256088, 1376616024, 6138841704, 14949184532, 19201535108, -18287313476, -186761626394, -604980766280
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2017

Keywords

Crossrefs

Product_{n>0} ((1-x^n)/(1+x^n))^(n^m): A002448 (m=0), A285675 (m=1), A285988 (m=2), this sequence (m=3), A285991 (m=4).

Formula

a(0) = 1, a(n) = -(2/n)*Sum_{k=1..n} A285989(k)*a(n-k) for n > 0.
G.f.: exp(Sum_{k>=1} (sigma_4(k) - sigma_4(2*k))*x^k/(8*k)). - Ilya Gutkovskiy, Apr 14 2019

A322082 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n, n/d odd} d^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 4, 4, 1, 1, 8, 10, 4, 2, 1, 16, 28, 16, 6, 2, 1, 32, 82, 64, 26, 8, 2, 1, 64, 244, 256, 126, 40, 8, 1, 1, 128, 730, 1024, 626, 224, 50, 8, 3, 1, 256, 2188, 4096, 3126, 1312, 344, 64, 13, 2, 1, 512, 6562, 16384, 15626, 7808, 2402, 512, 91, 12, 2, 1, 1024, 19684, 65536, 78126, 46720, 16808, 4096, 757, 104, 12, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,     1,     1,  ...
  1,  2,   4,    8,    16,    32,  ...
  2,  4,  10,   28,    82,   244,  ...
  1,  4,  16,   64,   256,  1024,  ...
  2,  6,  26,  126,   626,  3126,  ...
  2,  8,  40,  224,  1312,  7808,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, Sum[Boole[OddQ[n/d]] d^k, {d, Divisors[n]}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[j^k x^j/(1 - x^(2 j)), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
  • PARI
    T(n,k)={sumdiv(n, d, if(n/d%2, d^k))}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} j^k*x^j/(1 - x^(2*j)).

A309336 a(n) = n^4 if n odd, 15*n^4/16 if n even.

Original entry on oeis.org

0, 1, 15, 81, 240, 625, 1215, 2401, 3840, 6561, 9375, 14641, 19440, 28561, 36015, 50625, 61440, 83521, 98415, 130321, 150000, 194481, 219615, 279841, 311040, 390625, 428415, 531441, 576240, 707281, 759375, 923521, 983040, 1185921, 1252815, 1500625, 1574640, 1874161, 1954815
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 24 2019

Keywords

Comments

Moebius transform of A285989.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[OddQ[n], n^4, 15 n^4/16]; Table[a[n], {n, 0, 38}]
    nmax = 38; CoefficientList[Series[x (1 + 15 x + 76 x^2 + 165 x^3 + 230 x^4 + 165 x^5 + 76 x^6 + 15 x^7 + x^8)/(1 - x^2)^5, {x, 0, nmax}], x]
    LinearRecurrence[{0, 5, 0, -10, 0, 10, 0, -5, 0, 1}, {0, 1, 15, 81, 240, 625, 1215, 2401, 3840, 6561}, 39]
    Table[n^4 (31 - (-1)^n)/32, {n, 0, 38}]

Formula

G.f.: x * (1 + 15*x + 76*x^2 + 165*x^3 + 230*x^4 + 165*x^5 + 76*x^6 + 15*x^7 + x^8)/(1 - x^2)^5.
G.f.: Sum_{k>=1} J_4(k) * x^k/(1 - x^(2*k)), where J_4() is the Jordan function (A059377).
Dirichlet g.f.: zeta(s-4) * (1 - 1/2^s).
a(n) = n^4 * (31 - (-1)^n)/32.
a(n) = Sum_{d|n, n/d odd} J_4(d).
Sum_{n>=1} 1/a(n) = 241*Pi^4/21600 = 1.086832913851601267313987...
Multiplicative with a(2^e) = 15*2^(4*e-4), and a(p^e) = p^(4*e) for odd primes p. - Amiram Eldar, Oct 26 2020
Showing 1-6 of 6 results.