cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A322083 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} (-1)^(n/d+d)*d^k.

Original entry on oeis.org

1, 1, -2, 1, -3, 2, 1, -5, 4, -1, 1, -9, 10, -3, 2, 1, -17, 28, -13, 6, -4, 1, -33, 82, -57, 26, -12, 2, 1, -65, 244, -241, 126, -50, 8, 0, 1, -129, 730, -993, 626, -252, 50, -3, 3, 1, -257, 2188, -4033, 3126, -1394, 344, -45, 13, -4, 1, -513, 6562, -16257, 15626, -8052, 2402, -441, 91, -18, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Comments

For each k, the k-th column sequence (T(n,k))(n>=1) is a multiplicative function of n, equal to (-1)^(n+1)*(Id_k * 1) in the notation of the Bala link. - Peter Bala, Mar 19 2022

Examples

			Square array begins:
   1,   1,   1,    1,     1,     1,  ...
  -2,  -3,  -5,   -9,   -17,   -33,  ...
   2,   4,  10,   28,    82,   244,  ...
  -1,  -3, -13,  -57,  -241,  -993,  ...
   2,   6,  26,  126,   626,  3126,  ...
  -4, -12, -50, -252, -1394, -8052,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, Sum[(-1)^(n/d+d) d^k, {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[(-1)^(j + 1) j^k x^j/(1 + x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    f[p_, e_, k_] := If[k == 0, e + 1, (p^(k*e + k) - 1)/(p^k - 1)]; f[2, e_, k_] := If[k == 0, e - 3, -((2^(k - 1) - 1)*2^(k*e + 1) + 2^(k + 1) - 1)/(2^k - 1)]; T[1, k_] = 1; T[n_, k_] := Times @@ (f[First[#], Last[#], k] & /@ FactorInteger[n]); Table[T[n - k, k], {n, 1, 11}, {k, n - 1, 0, -1}] // Flatten (* Amiram Eldar, Nov 22 2022 *)
  • PARI
    T(n,k)={sumdiv(n, d, (-1)^(n/d+d)*d^k)}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} (-1)^(j+1)*j^k*x^j/(1 + x^j).

A322143 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n, d==1 (mod 4)} d^k - Sum_{d|n, d==3 (mod 4)} d^k.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, -2, 1, 1, 1, -8, 1, 2, 1, 1, -26, 1, 6, 0, 1, 1, -80, 1, 26, -2, 0, 1, 1, -242, 1, 126, -8, -6, 1, 1, 1, -728, 1, 626, -26, -48, 1, 1, 1, 1, -2186, 1, 3126, -80, -342, 1, 7, 2, 1, 1, -6560, 1, 15626, -242, -2400, 1, 73, 6, 0, 1, 1, -19682, 1, 78126, -728, -16806, 1, 703, 26, -10, 0
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 28 2018

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,    1,     1,  ...
  1,  1,   1,    1,    1,     1,  ...
  0, -2,  -8,  -26,  -80,  -242,  ...
  1,  1,   1,    1,    1,     1,  ...
  2,  6,  26,  126,  626,  3126,  ...
  0, -2,  -8,  -26,  -80,  -242,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[(-1)^(j - 1) (2 j - 1)^k x^(2 j - 1)/(1 - x^(2 j - 1)), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten

Formula

G.f. of column k: Sum_{j>=1} (-1)^(j-1)*(2*j - 1)^k*x^(2*j-1)/(1 - x^(2*j-1)).

A322081 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} (-1)^(n/d+1)*d^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 1, 3, 4, -1, 1, 7, 10, 1, 2, 1, 15, 28, 11, 6, 0, 1, 31, 82, 55, 26, 4, 2, 1, 63, 244, 239, 126, 30, 8, -2, 1, 127, 730, 991, 626, 196, 50, 1, 3, 1, 255, 2188, 4031, 3126, 1230, 344, 43, 13, 0, 1, 511, 6562, 16255, 15626, 7564, 2402, 439, 91, 6, 2, 1, 1023, 19684, 65279, 78126, 45990, 16808, 3823, 757, 78, 12, -2
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Examples

			Square array begins:
   1,  1,   1,    1,     1,     1,  ...
   0,  1,   3,    7,    15,    31,  ...
   2,  4,  10,   28,    82,   244,  ...
  -1,  1,  11,   55,   239,   991,  ...
   2,  6,  26,  126,   626,  3126,  ...
   0,  4,  30,  196,  1230,  7564,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, Sum[(-1)^(n/d + 1) d^k, {d, Divisors[n]}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[j^k x^j/(1 + x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
  • PARI
    T(n,k)={sumdiv(n, d, (-1)^(n/d+1)*d^k)}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} j^k*x^j/(1 + x^j).

A322084 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n, n/d==1 (mod 4)} d^k - Sum_{d|n, n/d==3 (mod 4)} d^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 4, 2, 1, 1, 8, 8, 4, 2, 1, 16, 26, 16, 6, 0, 1, 32, 80, 64, 26, 4, 0, 1, 64, 242, 256, 126, 32, 6, 1, 1, 128, 728, 1024, 626, 208, 48, 8, 1, 1, 256, 2186, 4096, 3126, 1280, 342, 64, 7, 2, 1, 512, 6560, 16384, 15626, 7744, 2400, 512, 73, 12, 0, 1, 1024, 19682, 65536, 78126, 46592, 16806, 4096, 703, 104, 10, 0
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,     1,     1,  ...
  1,  2,   4,    8,    16,    32,  ...
  0,  2,   8,   26,    80,   242,  ...
  1,  4,  16,   64,   256,  1024,  ...
  2,  6,  26,  126,   626,  3126,  ...
  0,  4,  32,  208,  1280,  7744,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[j^k x^j/(1 + x^(2 j)), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
  • PARI
    T(n,k)={sumdiv(n, d, if(d%2, (-1)^((d-1)/2)*(n/d)^k))}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} j^k*x^j/(1 + x^(2*j)).
Showing 1-4 of 4 results.