cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A285989 a(0) = 0, a(n) = Sum_{0 0.

Original entry on oeis.org

0, 1, 16, 82, 256, 626, 1312, 2402, 4096, 6643, 10016, 14642, 20992, 28562, 38432, 51332, 65536, 83522, 106288, 130322, 160256, 196964, 234272, 279842, 335872, 391251, 456992, 538084, 614912, 707282, 821312, 923522, 1048576, 1200644, 1336352, 1503652, 1700608
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2017

Keywords

Comments

Multiplicative because this sequence is the Dirichlet convolution of A000035 and A000583 which are both multiplicative. - Andrew Howroyd, Aug 05 2018

Crossrefs

Sum_{0A002131 (k=1), A076577 (k=2), A007331 (k=3), this sequence (k=4), A096960 (k=5), A096961 (k=7), A096962 (k=9), A096963 (k=11).

Programs

  • Maple
    f:= n -> add((n/d)^4, d = numtheory:-divisors(n/2^padic:-ordp(n,2))); # Robert Israel, Apr 30 2017
  • Mathematica
    {0}~Join~Table[DivisorSum[n, Mod[#, 2] (n/#)^4 &], {n, 36}] (* Michael De Vlieger, Aug 05 2018 *)
  • PARI
    a(n)={sumdiv(n, d, (d%2)*(n/d)^4)} \\ Andrew Howroyd, Aug 05 2018

Formula

a(n) = A051001(n)*16^A007814(n) for n >= 1. - Robert Israel, Apr 30 2017
From Amiram Eldar, Nov 01 2022: (Start)
Multiplicative with a(2^e) = 2^(4*e) and a(p^e) = (p^(4*e+4)-1)/(p^4-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^5, where c = 31*zeta(5)/160 = 0.200904... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-4)*(1-1/2^s). - Amiram Eldar, Jan 08 2023

A285675 Expansion of Product_{n>0} ((1-x^n)/(1+x^n))^n in powers of x.

Original entry on oeis.org

1, -2, -2, 0, 6, 8, 4, -4, -18, -34, -32, -8, 36, 96, 144, 152, 94, -60, -294, -560, -760, -760, -460, 228, 1276, 2486, 3576, 4080, 3456, 1304, -2576, -7956, -13986, -19208, -21644, -19056, -9462, 8200, 33364, 63224, 92384, 112860, 114976, 88896, 26660, -74792
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2017

Keywords

Crossrefs

Product_{n>0} ((1-x^n)/(1+x^n))^(n^m): A002448 (m=0), this sequence (m=1), A285988 (m=2), A285990 (m=3), A285991 (m=4).

Formula

a(0) = 1, a(n) = -(2/n)*Sum_{k=1..n} A076577(k)*a(n-k) for n > 0.
G.f.: exp(Sum_{k>=1} (sigma_2(k) - sigma_2(2*k))*x^k/(2*k)). - Ilya Gutkovskiy, Apr 14 2019
G.f.: exp( - 2*Sum_{n >= 0} x^(2*n+1)/((2*n+1)*(1 - x^(2*n+1))^2) ). Cf. A000122. - Peter Bala, Dec 23 2021

A285988 Expansion of Product_{n>0} ((1-x^n)/(1+x^n))^(n^2) in powers of x.

Original entry on oeis.org

1, -2, -6, -4, 22, 72, 92, -48, -522, -1294, -1624, 300, 6948, 19032, 30192, 20432, -45578, -202788, -437178, -599460, -311112, 1038624, 4023532, 8423280, 11892004, 8429270, -12073032, -60747944, -139842736, -223644552, -232762256, -15050944, 636838518
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2017

Keywords

Crossrefs

Product_{n>0} ((1-x^n)/(1+x^n))^(n^m): A002448 (m=0), A285675 (m=1), this sequence (m=2), A285990 (m=3), A285991 (m=4).

Formula

a(0) = 1, a(n) = -(2/n)*Sum_{k=1..n} A007331(k)*a(n-k) for n > 0.
G.f.: exp(Sum_{k>=1} (sigma_3(k) - sigma_3(2*k))*x^k/(4*k)). - Ilya Gutkovskiy, Apr 14 2019

A285991 Expansion of Product_{n>0} ((1-x^n)/(1+x^n))^(n^4) in powers of x.

Original entry on oeis.org

1, -2, -30, -100, 262, 3672, 13836, -80, -264810, -1421438, -3019032, 7630764, 89648580, 358974280, 548677872, -2390377936, -20531491146, -74635378020, -110275527170, 425036176572, 3669041188152, 13597190512480, 23995331740700, -45340748171760
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2017

Keywords

Crossrefs

Product_{n>0} ((1-x^n)/(1+x^n))^(n^m): A002448 (m=0), A285675 (m=1), A285988 (m=2), A285990 (m=3), this sequence (m=4).

Formula

a(0) = 1, a(n) = -(2/n)*Sum_{k=1..n} A096960(k)*a(n-k) for n > 0.
G.f.: exp(Sum_{k>=1} (sigma_5(k) - sigma_5(2*k))*x^k/(16*k)). - Ilya Gutkovskiy, Apr 14 2019
Showing 1-4 of 4 results.