cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A285675 Expansion of Product_{n>0} ((1-x^n)/(1+x^n))^n in powers of x.

Original entry on oeis.org

1, -2, -2, 0, 6, 8, 4, -4, -18, -34, -32, -8, 36, 96, 144, 152, 94, -60, -294, -560, -760, -760, -460, 228, 1276, 2486, 3576, 4080, 3456, 1304, -2576, -7956, -13986, -19208, -21644, -19056, -9462, 8200, 33364, 63224, 92384, 112860, 114976, 88896, 26660, -74792
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2017

Keywords

Crossrefs

Product_{n>0} ((1-x^n)/(1+x^n))^(n^m): A002448 (m=0), this sequence (m=1), A285988 (m=2), A285990 (m=3), A285991 (m=4).

Formula

a(0) = 1, a(n) = -(2/n)*Sum_{k=1..n} A076577(k)*a(n-k) for n > 0.
G.f.: exp(Sum_{k>=1} (sigma_2(k) - sigma_2(2*k))*x^k/(2*k)). - Ilya Gutkovskiy, Apr 14 2019
G.f.: exp( - 2*Sum_{n >= 0} x^(2*n+1)/((2*n+1)*(1 - x^(2*n+1))^2) ). Cf. A000122. - Peter Bala, Dec 23 2021

A285990 Expansion of Product_{n>0} ((1-x^n)/(1+x^n))^(n^3) in powers of x.

Original entry on oeis.org

1, -2, -14, -24, 78, 536, 1236, -308, -12322, -45218, -73680, 76144, 872868, 2833904, 4612952, -2467592, -42205746, -147191388, -285572658, -127256088, 1376616024, 6138841704, 14949184532, 19201535108, -18287313476, -186761626394, -604980766280
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2017

Keywords

Crossrefs

Product_{n>0} ((1-x^n)/(1+x^n))^(n^m): A002448 (m=0), A285675 (m=1), A285988 (m=2), this sequence (m=3), A285991 (m=4).

Formula

a(0) = 1, a(n) = -(2/n)*Sum_{k=1..n} A285989(k)*a(n-k) for n > 0.
G.f.: exp(Sum_{k>=1} (sigma_4(k) - sigma_4(2*k))*x^k/(8*k)). - Ilya Gutkovskiy, Apr 14 2019

A285991 Expansion of Product_{n>0} ((1-x^n)/(1+x^n))^(n^4) in powers of x.

Original entry on oeis.org

1, -2, -30, -100, 262, 3672, 13836, -80, -264810, -1421438, -3019032, 7630764, 89648580, 358974280, 548677872, -2390377936, -20531491146, -74635378020, -110275527170, 425036176572, 3669041188152, 13597190512480, 23995331740700, -45340748171760
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2017

Keywords

Crossrefs

Product_{n>0} ((1-x^n)/(1+x^n))^(n^m): A002448 (m=0), A285675 (m=1), A285988 (m=2), A285990 (m=3), this sequence (m=4).

Formula

a(0) = 1, a(n) = -(2/n)*Sum_{k=1..n} A096960(k)*a(n-k) for n > 0.
G.f.: exp(Sum_{k>=1} (sigma_5(k) - sigma_5(2*k))*x^k/(16*k)). - Ilya Gutkovskiy, Apr 14 2019
Showing 1-3 of 3 results.