cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A014809 Expansion of Jacobi theta constant (theta_2/2)^24.

Original entry on oeis.org

1, 24, 276, 2048, 11178, 48576, 177400, 565248, 1612875, 4200352, 10131156, 22892544, 48897678, 99448320, 193740408, 363315200, 658523925, 1157743824, 1980143600, 3303168000, 5386270686, 8602175744, 13477895856, 20748607488, 31425764410, 46883528256, 68969957700
Offset: 0

Views

Author

Keywords

Comments

Number of ways of writing n as the sum of 24 triangular numbers from A000217.

Crossrefs

Column k=24 of A286180.
Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.

Programs

  • Mathematica
    a[n_] := Module[{e = IntegerExponent[n+3, 2]}, (2^(11*e) * DivisorSigma[11, (n+3)/2^e] - RamanujanTau[n+3] - 2072 * If[OddQ[n], RamanujanTau[(n+3)/2], 0]) / 176896]; Array[a, 27, 0] (* Amiram Eldar, Jan 11 2025 *)

Formula

From Wolfdieter Lang, Jan 13 2017: (Start)
G.f.: 24th power of the g.f. for A010054.
a(n) = (A096963(n+3) - tau(n+3) - 2072*tau((n+3)/2))/176896, with Ramanujan's tau function given in A000594, and tau(n) is put to 0 if n is not integer. See the Ono et al. link, case k=24, Theorem 8. (End)
a(n) = 1/72 * Sum_{a, b, x, y > 0, a*x + b*y = n + 3, x == y == 1 mod 2 and a > b} (a*b)^3*(a^2 - b^2)^2. - Seiichi Manyama, May 05 2017
a(0) = 1, a(n) = (24/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
G.f.: exp(Sum_{k>=1} 24*(x^k/k)/(1 + x^k)). - Ilya Gutkovskiy, Jul 31 2017

Extensions

More terms from Seiichi Manyama, May 05 2017

A076577 Sum of squares of divisors d of n such that n/d is odd.

Original entry on oeis.org

1, 4, 10, 16, 26, 40, 50, 64, 91, 104, 122, 160, 170, 200, 260, 256, 290, 364, 362, 416, 500, 488, 530, 640, 651, 680, 820, 800, 842, 1040, 962, 1024, 1220, 1160, 1300, 1456, 1370, 1448, 1700, 1664, 1682, 2000, 1850, 1952, 2366, 2120, 2210, 2560, 2451, 2604
Offset: 1

Views

Author

Vladeta Jovovic, Oct 19 2002

Keywords

Examples

			G.f. = x + 4*x^2 + 10*x^3 + 16*x^4 + 26*x^5 + 40*x^6 + 50*x^7 + 64*x^8 + ...
		

Crossrefs

Programs

  • Maple
    a:= n -> mul(`if`(t[1]=2, 2^(2*t[2]),
         (t[1]^(2*(1+t[2]))-1)/(t[1]^2-1)),t=ifactors(n)[2]):
    map(a, [$1..100]); # Robert Israel, Jul 05 2016
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ d^2 Mod[ n/d, 2], {d, Divisors @ n}]]; (* Michael Somos, Jun 09 2014 *)
    Table[CoefficientList[Series[-Log[Product[(x^k - 1)^k/(x^k + 1)^k, {k, 1, 80}]]/2, {x, 0, 80}], x][[n + 1]] n, {n, 1, 80}] (* Benedict W. J. Irwin, Jul 05 2016 *)
    f[2, e_] := 4^e; f[p_, e_] := (p^(2*e + 2) - 1)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2020 *)
  • PARI
    a(n) = sumdiv(n, d, d^2*((n/d) % 2)); \\ Michel Marcus, Jun 09 2014

Formula

G.f.: Sum_{m>0} m^2*x^m/(1-x^(2*m)). More generally, if b(n, k) is sum of k-th powers of divisors d of n such that n/d is odd then b(2n, k) = sigma_k(2n)-sigma_k(n), b(2n+1, k) = sigma_k(2n+1), where sigma_k(n) is sum of k-th powers of divisors of n. G.f. for b(n, k): Sum_{m>0} m^k*x^m/(1-x^(2*m)).
b(n, k) is multiplicative: b(2^e, k) = 2^(k*e), b(p^e, k) = (p^(ke+k)-1)/(p^k-1) for an odd prime p.
a(2*n) = sigma_2(2*n)-sigma_2(n), a(2*n+1) = sigma_2(2*n+1), where sigma_2(n) is sum of squares of divisors of n (cf. A001157).
b(n, k) = (sigma_k(2n)-sigma_k(n))/2^k. - Vladeta Jovovic, Oct 06 2003
Dirichlet g.f.: zeta(s)*(1-1/2^s)*zeta(s-2). - Geoffrey Critzer, Mar 28 2015
L.g.f.: -log(Product_{ k>0 } (x^k-1)^k/(x^k+1)^k)/2 = Sum_{ n>0 } (a(n)/n)*x^n. - Benedict W. J. Irwin, Jul 05 2016
Sum_{k=1..n} a(k) ~ 7*Zeta(3)*n^3 / 24. - Vaclav Kotesovec, Feb 08 2019

A096960 a(n) = Sum_{0

Original entry on oeis.org

1, 32, 244, 1024, 3126, 7808, 16808, 32768, 59293, 100032, 161052, 249856, 371294, 537856, 762744, 1048576, 1419858, 1897376, 2476100, 3201024, 4101152, 5153664, 6436344, 7995392, 9768751, 11881408, 14408200, 17211392, 20511150
Offset: 1

Views

Author

Ralf Stephan, Jul 18 2004

Keywords

Examples

			G.f. = q + 32*q^2 + 244*q^3 + 1024*q^4 + 3126*q^5 + 7808*q^6 + 16808*q^7 + 32768*q^8 + ...
		

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma0(2), 6), 30) [2]; /* Michael Somos, Nov 30 2014 */
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ d^5 Boole[ OddQ[ n/d]], {d, Divisors[ n]}]]; (* Michael Somos, Jun 04 2013 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^4 + EllipticTheta[ 2, 0, q]^4) EllipticTheta[ 2, 0, q^(1/2)]^8 / 256, {q, 0, n}]; (* Michael Somos, Jun 04 2013 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * d^5))};
    
  • Sage
    ModularForms( Gamma0(2), 6, prec=33).gen(1).coefficients(30) # Michael Somos, Jun 04 2013
    

Formula

G.f.: Sum {k>0} k^5 * x^k / (1 - x^(2*k)).
From Amiram Eldar, Nov 01 2022: (Start)
Multiplicative with a(2^e) = 2^(5*e) and a(p^e) = (p^(5*e+5)-1)/(p^5-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^6, where c = 21*zeta(6)/128 = 0.166907... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-5)*(1-1/2^s). - Amiram Eldar, Jan 08 2023

A096961 a(n) = Sum_{0

Original entry on oeis.org

1, 128, 2188, 16384, 78126, 280064, 823544, 2097152, 4785157, 10000128, 19487172, 35848192, 62748518, 105413632, 170939688, 268435456, 410338674, 612500096, 893871740, 1280016384, 1801914272, 2494358016, 3404825448
Offset: 1

Views

Author

Ralf Stephan, Jul 18 2004

Keywords

Examples

			G.f. = q + 128*q^2 + 2188*q^3 + 16384*q^4 + 78126*q^5 + 280064*q^6 + 823544*q^7 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(2), 8), 24); A[2] + 128*A[3]; /* Michael Somos, Nov 30 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ With[{u1 = QPochhammer[ q]^8, u2 = QPochhammer[ q^2]^8, u4 = QPochhammer[ q^4]^8}, q u2 (u1^2 + 136 q u4 u1 + 2176 q^2 u4^2 ) / u1], {q, 0, n}]; (* Michael Somos, Jun 04 2013 *)
    a[ n_] := If[ n < 1, 0, Sum[ d^7 Mod[ n/d, 2], {d, Divisors[ n]}]]; (* Michael Somos, Jan 09 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * d^7))};
    
  • Sage
    ModularForms( Gamma0(2), 8, prec=24).2; # Michael Somos, Jun 04 2013
    

Formula

G.f.: Sum_{k>0} k^7 * x^k / (1 - x^(2*k)).
Expansion of (E_8(q) - E_8(q^2)) / 480 in powers of q where E_8() is an Eisenstein series (A008410). - Michael Somos, Jan 09 2015
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 2^(7*e) and a(p^e) = (p^(7*e+7)-1)/(p^7-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^8, where c = 255*zeta(8)/2048 = 17*Pi^8/1290240 = 0.125019... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-7)*(1-1/2^s). - Amiram Eldar, Jan 09 2023

A096962 a(n) = Sum_{0

Original entry on oeis.org

1, 512, 19684, 262144, 1953126, 10078208, 40353608, 134217728, 387440173, 1000000512, 2357947692, 5160042496, 10604499374, 20661047296, 38445332184, 68719476736, 118587876498, 198369368576, 322687697780, 512000262144
Offset: 1

Views

Author

Ralf Stephan, Jul 18 2004

Keywords

Examples

			G.f. = q + 512*q^2 + 19684*q^3 + 262144*q^4 + 1953126*q^5 + 10078208*q^6 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(2), 10), 21); A[2] + 512*A[3]; /* Michael Somos, Aug 25 2014 */
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ d^9 Boole[ OddQ[ n/d]], {d, Divisors[ n]}]]; (* Michael Somos, Jun 04 2013 *)
    a[ n_] := SeriesCoefficient[ With[{u1 = QPochhammer[ q]^8, u2 = QPochhammer[ q^2]^4, u4 = QPochhammer[ q^4]^8}, q u2 (u1 + 32 q u4) (u1^2 + 496 q u4 u1 + 7936 q^2 u4^2 ) / u1], {q, 0, n}]; (* Michael Somos, Jun 04 2013 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * d^9))}; /* Michael Somos, Jun 04 2013 */
    
  • PARI
    {a(n) = local(A, A1, A2, A4); if( n<1, 0, n--; A = x * O(x^n); A1 = eta(x + A)^8; A2 = eta(x^2 + A)^4; A4 = eta(x^4 + A)^8; polcoeff( A2 * (A1 + 32*x * A4) * (A1^2 + 496*x * A1*A4 + 7936*x^2 * A4^2) / A1, n))}; /* Michael Somos, Jun 04 2013 */
    
  • Sage
    ModularForms( Gamma0(2), 10, prec=33).2; # Michael Somos, Jun 04 2013
    

Formula

G.f.: Sum_{k>0} k^9 * x^k / (1 - x^(2*k)).
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 2^(9*e) and a(p^e) = (p^(9*e+9)-1)/(p^9-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^10, where c = 1023*zeta(10)/10240 = 31*Pi^10/29030400 = 0.100001704136... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-9)*(1-1/2^s). - Amiram Eldar, Jan 09 2023

A285989 a(0) = 0, a(n) = Sum_{0 0.

Original entry on oeis.org

0, 1, 16, 82, 256, 626, 1312, 2402, 4096, 6643, 10016, 14642, 20992, 28562, 38432, 51332, 65536, 83522, 106288, 130322, 160256, 196964, 234272, 279842, 335872, 391251, 456992, 538084, 614912, 707282, 821312, 923522, 1048576, 1200644, 1336352, 1503652, 1700608
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2017

Keywords

Comments

Multiplicative because this sequence is the Dirichlet convolution of A000035 and A000583 which are both multiplicative. - Andrew Howroyd, Aug 05 2018

Crossrefs

Sum_{0A002131 (k=1), A076577 (k=2), A007331 (k=3), this sequence (k=4), A096960 (k=5), A096961 (k=7), A096962 (k=9), A096963 (k=11).

Programs

  • Maple
    f:= n -> add((n/d)^4, d = numtheory:-divisors(n/2^padic:-ordp(n,2))); # Robert Israel, Apr 30 2017
  • Mathematica
    {0}~Join~Table[DivisorSum[n, Mod[#, 2] (n/#)^4 &], {n, 36}] (* Michael De Vlieger, Aug 05 2018 *)
  • PARI
    a(n)={sumdiv(n, d, (d%2)*(n/d)^4)} \\ Andrew Howroyd, Aug 05 2018

Formula

a(n) = A051001(n)*16^A007814(n) for n >= 1. - Robert Israel, Apr 30 2017
From Amiram Eldar, Nov 01 2022: (Start)
Multiplicative with a(2^e) = 2^(4*e) and a(p^e) = (p^(4*e+4)-1)/(p^4-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^5, where c = 31*zeta(5)/160 = 0.200904... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-4)*(1-1/2^s). - Amiram Eldar, Jan 08 2023

A322082 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n, n/d odd} d^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 4, 4, 1, 1, 8, 10, 4, 2, 1, 16, 28, 16, 6, 2, 1, 32, 82, 64, 26, 8, 2, 1, 64, 244, 256, 126, 40, 8, 1, 1, 128, 730, 1024, 626, 224, 50, 8, 3, 1, 256, 2188, 4096, 3126, 1312, 344, 64, 13, 2, 1, 512, 6562, 16384, 15626, 7808, 2402, 512, 91, 12, 2, 1, 1024, 19684, 65536, 78126, 46720, 16808, 4096, 757, 104, 12, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,     1,     1,  ...
  1,  2,   4,    8,    16,    32,  ...
  2,  4,  10,   28,    82,   244,  ...
  1,  4,  16,   64,   256,  1024,  ...
  2,  6,  26,  126,   626,  3126,  ...
  2,  8,  40,  224,  1312,  7808,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, Sum[Boole[OddQ[n/d]] d^k, {d, Divisors[n]}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[j^k x^j/(1 - x^(2 j)), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
  • PARI
    T(n,k)={sumdiv(n, d, if(n/d%2, d^k))}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} j^k*x^j/(1 - x^(2*j)).
Showing 1-7 of 7 results.