A096977 a(n) = 4*a(n-1) + 3*a(n-2) - 14*a(n-3) + 8*a(n-4).
0, 1, 2, 11, 36, 157, 598, 2447, 9672, 38913, 155194, 621683, 2484908, 9943269, 39765790, 159077719, 636281744, 2545185225, 10180624386, 40722730555, 162890456180, 651562756781, 2606249162982, 10425000380191, 41699994064216
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,3,-14,8).
Crossrefs
Cf. A001654.
Programs
-
Magma
[4*4^n/27-4*(-2)^n/27+n/9: n in [0..30]]; // Vincenzo Librandi, Jul 01 2011
-
Mathematica
LinearRecurrence[{4,3,-14,8},{0,1,2,11},30] (* Harvey P. Dale, Jul 01 2015 *)
-
PARI
a(n)=(4*4^n-4*(-2)^n+3*n)/27 \\ Charles R Greathouse IV, Jul 01 2011
Formula
G.f.: x*(1-2*x)/((1-x)^2*(1+2*x)*(1-4*x)).
a(n) = 4*4^n/27 - 4*(-2)^n/27 + n/9.
a(n) = Sum_{k=0..n} A001045(k)^2.
a(n) = 4*a(n-1) + 3*a(n-2) - 14*a(n-3) + 8*a(n-4).
Comments