A097033 Number of transient terms before either 0 or a finite cycle is reached when unitary-proper-divisor-sum-function f(x) = A034460(x) is iterated and the initial value is n.
1, 2, 2, 2, 2, 0, 2, 2, 2, 3, 2, 3, 2, 4, 3, 2, 2, 4, 2, 4, 3, 5, 2, 4, 2, 3, 2, 4, 2, 0, 2, 2, 4, 5, 3, 5, 2, 6, 3, 5, 2, 0, 2, 3, 4, 4, 2, 5, 2, 5, 4, 5, 2, 0, 3, 3, 3, 3, 2, 0, 2, 6, 3, 2, 3, 2, 2, 6, 3, 7, 2, 5, 2, 6, 3, 5, 3, 1, 2, 6, 2, 4, 2, 6, 3, 5, 5, 5, 2, 0, 4, 5, 4, 6, 3, 6, 2, 6, 4, 1, 2, 1, 2, 6, 6
Offset: 1
Keywords
Examples
From _Antti Karttunen_, Sep 24 2018: (Start) For n = 1, A034460(1) = 0 that is, we end to a terminal zero after a transient part of length 1, thus a(1) = 1. For n = 2, A034460(2) = 1, and A034460(1) = 0, so we end to a terminal zero after a transient part of length 2, thus a(2) = 2. For n = 30, A034460(30) = 42, A034460(42) = 54, A034460(54) = 30, thus a(30) = a(42) = a(54) = 0, as 30, 42 and 54 are all contained in their own terminal cycle, without a preceding transient part. (End) For n = 1506, the iteration-list is {1506, 1518, 1938, 2382, 2394, 2406, [2418, 2958, 3522, 3534, 4146, 4158, 3906, 3774, 4434, 4446, 3954, 3966, 3978, 3582, 2418, ..., ad infinitum]}. After a transient of length 6 the iteration ends in a cycle of length 14, thus a(1506) = 6. If a(n) = 0, then n is a term in an attractor set like A002827, A063991, A097024, A097030.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
a034460[0] = 0; (* avoids dividing by 0 when an iteration reaches 0 *) a034460[n_] := Total[Select[Divisors[n], GCD[#, n/#]==1&]]-n/;n>0 transient[k_] := Module[{iter=NestWhileList[a034460, k, UnsameQ, All]}, Position[iter, Last[iter]][[1, 1]]-1] a097033[n_] := Map[transient, Range[n]] a097033[105] (* Hartmut F. W. Hoft, Jan 24 2024 *)
-
PARI
A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460 A097033(n) = { my(visited = Map()); for(j=1, oo, if(mapisdefined(visited, n), return(mapget(visited, n)-1), mapput(visited, n, j)); n = A034460(n); if(!n,return(j))); }; \\ Antti Karttunen, Sep 23 2018
Formula
Extensions
Definition corrected (to agree with the given terms) by Antti Karttunen, Sep 23 2018, based on observations by Hartmut F. W. Hoft