cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097051 a(n) = floor(n/a(floor(n/2))); a(1) = 1.

Original entry on oeis.org

1, 2, 3, 2, 2, 2, 2, 4, 4, 5, 5, 6, 6, 7, 7, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 1

Views

Author

Keywords

Examples

			a(50)=floor(50/a(25))
..... a(25)=floor(25/a(12))
........... a(12)=floor(12/a(6))
................. a(6)=floor(6/a(3))
...................... a(3)=floor(3/a(1))
........................... a(1)=1
...................... a(3)=floor(3/a(1))=floor(3/1)=3
................. a(6)=floor(6/a(3))=floor(6/3)=2
........... a(12)=floor(12/a(6))=floor(12/2)=6
..... a(25)=floor(25/a(12))=floor(25/6)=4
a(50)=floor(50/a(25))=floor(50/4)=12.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember;  floor(n/procname(floor(n/2))) end proc:
    f(1):= 1:
    map(f, [$1..200]); # Robert Israel, Jan 06 2021
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Floor[n/a[Floor[n/2]]]; Table[ a[n], {n, 94}]

Formula

If floor(log_2(n))=2k+1, then a(n) = floor(n/2^k). If floor(log_2(n))=2k, then a(n) = 2^k.

Extensions

Formula added by Max Alekseyev, Mar 02 2011