cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097055 Numbers n such that the interval n^2 < x < (n+1)^2 contains at least one nonsquare perfect power A097054.

Original entry on oeis.org

2, 5, 11, 14, 15, 18, 22, 31, 36, 41, 45, 46, 52, 55, 58, 70, 76, 82, 88, 89, 90, 96, 103, 110, 117, 129, 132, 140, 148, 156, 164, 172, 181, 189, 198, 207, 225, 234, 243, 252, 262, 272, 279, 281, 291, 301, 311, 316, 322, 332, 353, 362, 364, 374, 385, 396, 401
Offset: 1

Views

Author

Hugo Pfoertner, Jul 21 2004

Keywords

Examples

			a(1)=2 because 2^2<2^3<3^2, a(2)=5: 5^2<3^3<2^5<6^2, a(3)=11: 11^2<5^3<2^7<12^2.
		

Crossrefs

Programs

  • Mathematica
    nn=1000^2; pp=Select[Union[Flatten[Table[n^i, {i,Prime[Range[2,PrimePi[Log[2,nn]]]]}, {n,2,nn^(1/i)}]]], !IntegerQ[Sqrt[#]]&]; Union[Floor[Sqrt[pp]]] (* T. D. Noe, Apr 19 2011 *)
  • PARI
    is(n)=my(n2=n^2,t=n2+2*n); for(e=3,logint(t,2), if(sqrtnint(t,e)^e>n2, return(1))); 0 \\ Charles R Greathouse IV, Aug 28 2016
    
  • Python
    from itertools import count, islice
    from sympy import mobius, integer_nthroot
    def A097055_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n: sum(mobius(k)*(1-integer_nthroot((n+1)**2,k)[0]) for k in range((n**2).bit_length(),((n+1)**2).bit_length()))+sum(mobius(k)*(integer_nthroot(n**2,k)[0]-integer_nthroot((n+1)**2,k)[0]) for k in range(3,(n**2).bit_length())), count(max(startvalue,2)))
    A097055_list = list(islice(A097055_gen(),30)) # Chai Wah Wu, Aug 14 2024

Formula

a(n) ~ n^(3/2). - Charles R Greathouse IV, Aug 28 2016