cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097064 Expansion of (1 - 4*x + 6*x^2)/(1 - 2*x)^2.

Original entry on oeis.org

1, 0, 2, 8, 24, 64, 160, 384, 896, 2048, 4608, 10240, 22528, 49152, 106496, 229376, 491520, 1048576, 2228224, 4718592, 9961472, 20971520, 44040192, 92274688, 192937984, 402653184, 838860800, 1744830464, 3623878656, 7516192768, 15569256448, 32212254720, 66571993088
Offset: 0

Views

Author

Paul Barry, Jul 22 2004

Keywords

Comments

Binomial transform of A097062.

Crossrefs

Essentially the same as A036289.

Programs

  • Mathematica
    CoefficientList[Series[(1-4x+6x^2)/(1-2x)^2,{x,0,30}],x] (* or *) Join[{1},LinearRecurrence[{4,-4},{0,2},30]] (* Harvey P. Dale, May 26 2011 *)

Formula

a(n) = (n-1)*2^(n-1) + 3*0^n/2.
a(n) = 4*a(n-1) - 4*a(n-2), n>2.
a(n) = Sum_{k=0..n} binomial(n, k)*((2k-1)/2 + 3*(-1)^k/2).
a(n+1)/2 = A001787(n).
From Amiram Eldar, Oct 01 2022: (Start)
Sum_{n>=2} 1/a(n) = log(2) (A002162).
Sum_{n>=2} (-1)^n/a(n) = log(3/2) (A016578). (End)
E.g.f.: (3 - exp(2*x)*(1 - 2*x))/2. - Stefano Spezia, Feb 12 2023