A097085 Row sums of triangle A097084, in which the n-th diagonal equals the n-th row transformed by triangle A008459 (squared binomial coefficients).
1, 2, 4, 10, 26, 70, 204, 618, 1908, 6010, 19316, 63034, 208210, 695594, 2346748, 7983450, 27364842, 94439262, 327922692, 1145029314, 4018618374, 14169874350, 50179643628, 178410716622, 636679332588, 2279906714610, 8190512723940
Offset: 0
Keywords
Examples
[1,2,3,4][3,2,1,4] is an anagram composition of 20 enumerated by a(10), [3,2,1] 5 [2,1,3] is an anagram composition of 17 enumerated by a(8), [3467] 8 [7643] is an anagram composition of 48 enumerated by a(24). - _Gregory L. Simay_, Oct 30 2015
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A097084.
Cf. A263897. - Gregory L. Simay, Oct 30 2015
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0, p!^2, `if`(i<1, 0, add(b(n-i*j, i-1, p+j)/j!^2, j=0..n/i))) end: a:= proc(n) option remember; b(n$2, 0)+`if`(n>0, a(n-1), 0) end: seq(a(n), n=0..30); # Alois P. Heinz, Oct 30 2015
-
Mathematica
b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!^2, If[i < 1, 0, Sum[b[n - i*j, i - 1, p + j]/j!^2, {j, 0, n/i}]]]; a[n_] := a[n] = b[n, n, 0] + If[n > 0, a[n - 1], 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 04 2018, after Alois P. Heinz *)
Formula
a(n) = Sum_{j=0..n} A263897(j). - Gregory L. Simay, Oct 30 2015
Comments