cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097162 a(n) = Sum_{k=0..n} C(floor((n+1)/2),floor((k+1)/2))*2^k.

Original entry on oeis.org

1, 3, 7, 21, 37, 123, 187, 681, 937, 3663, 4687, 19341, 23437, 100803, 117187, 520401, 585937, 2667543, 2929687, 13599861, 14648437, 69047883, 73242187, 349433721, 366210937, 1763945823, 1831054687, 8886837981, 9155273437, 44702625363
Offset: 0

Views

Author

Paul Barry, Jul 30 2004

Keywords

Crossrefs

Programs

  • Maple
    A097162:=n->add(binomial(floor((n+1)/2),floor((k+1)/2))*2^k, k=0..n): seq(A097162(n), n=0..30); # Wesley Ivan Hurt, Sep 18 2014
  • Mathematica
    LinearRecurrence[{1,9,-9,-20,20},{1,3,7,21,37},50] (* Vincenzo Librandi, Jan 30 2012 *)

Formula

G.f.: (1+2*x-5*x^2-4*x^3)/((1-x)*(1-4*x^2)*(1-5*x^2)).
a(n) = (3/4-3*sqrt(5)/4)*(-sqrt(5))^n +(3/4+3*sqrt(5)/4)*(sqrt(5))^n-(2^n-(-2)^n)-1/2.
a(2*n) = A057651(n); a(2*n+1)=3*A097165(n).
a(n+5) = 20*a(n)-20*a(n+1)-9*a(n+2)+9*a(n+3)+a(n+4). - Robert Israel, Sep 18 2014