A097164 Expansion of (1+3x)/((1-x)(1-4x^2)).
1, 4, 8, 20, 36, 84, 148, 340, 596, 1364, 2388, 5460, 9556, 21844, 38228, 87380, 152916, 349524, 611668, 1398100, 2446676, 5592404, 9786708, 22369620, 39146836, 89478484, 156587348, 357913940, 626349396, 1431655764, 2505397588
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4).
Programs
-
Maple
a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=4*a[n-2]+4 od: seq(a[n], n=1..31); # Zerinvary Lajos, Mar 17 2008
-
Mathematica
CoefficientList[Series[(1+3x)/((1-x)(1-4x^2)),{x,0,50}],x] (* or *) LinearRecurrence[{1,4,-4},{1,4,8},50] (* Harvey P. Dale, Jul 11 2023 *)
Formula
a(n) = 5*2^n/2 - (-2)^n/6 - 4/3;
a(n) = a(n-1) + 4a(n-2) - 4a(n-3).
G.f. ( 1+3*x ) / ( (x-1)*(2*x+1)*(2*x-1) ). - R. J. Mathar, Jul 06 2011
Comments