A097179 Triangle read by rows in which row n gives coefficients of polynomial R_n(y) that satisfies R_n(1/2) = 4^n, where R_n(y) forms the initial (n+1) terms of g.f. A077860(y)^(n+1).
1, 1, 6, 1, 9, 42, 1, 12, 74, 308, 1, 15, 115, 595, 2310, 1, 18, 165, 1020, 4746, 17556, 1, 21, 224, 1610, 8722, 37730, 134596, 1, 24, 292, 2392, 14778, 73080, 299508, 1038312, 1, 27, 369, 3393, 23535, 130851, 604707, 2376099, 8046918
Offset: 0
Examples
Row polynomials evaluated at y=1/2 equals powers of 4: 4^1 = 1 + 6/2; 4^2 = 1 + 9/2 + 42/2^2; 4^3 = 1 + 12/2 + 74/2^2 + 308/2^3; 4^4 = 1 + 15/2 + 115/2^2 + 595/2^3 + 2310/2^4; where A077860(y)^(n+1) has the same initial terms as the n-th row: A077860(y) = 1 +3*y +5*y^2 +5*y^3 +1*y^4 -7*y^5 -15*y^6 -15*y^7 +... A077860(y)^2 = 1 + 6*y +... A077860(y)^3 = 1 + 9*y + 42*y^2 +... A077860(y)^4 = 1 + 12*y + 74*y^2 + 308*y^3 +... A077860(y)^5 = 1 + 15*y + 115*y^2 + 595*y^3 + 2310*y^4 +... Rows begin with n=0: 1; 1, 6; 1, 9, 42; 1, 12, 74, 308; 1, 15, 115, 595, 2310; 1, 18, 165, 1020, 4746, 17556; 1, 21, 224, 1610, 8722, 37730, 134596; 1, 24, 292, 2392, 14778, 73080, 299508, 1038312; 1, 27, 369, 3393, 23535, 130851, 604707, 2376099, 8046918; ...
Links
- G. C. Greubel, Rows n = 0..50 of triangle, flattened
Programs
-
Mathematica
Table[SeriesCoefficient[2*y/((1-8*x*y) +(2*y-1)*(1-8*x*y)^(3/4)), {x, 0, n}, {y,0,k}], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 17 2019 *)
-
PARI
{T(n,k)=if(n==0,1,if(k==0,1,if(k==n, 2^n*(4^n-sum(j=0,n-1, T(n,j)/2^j)), polcoeff((Ser(vector(n,i,T(n-1,i-1)), x) +x*O(x^k))^((n+1)/n),k,x))))}
Comments