A097181 Triangle read by rows in which row n gives coefficients of polynomial R_n(y) that satisfies R_n(1/2) = 8^n, where R_n(y) forms the initial (n+1) terms of g.f. A097182(y)^(n+1).
1, 1, 14, 1, 21, 210, 1, 28, 378, 3220, 1, 35, 595, 6475, 49910, 1, 42, 861, 11396, 108402, 778596, 1, 49, 1176, 18326, 207074, 1791930, 12198004, 1, 56, 1540, 27608, 361018, 3647672, 29389492, 191682920, 1, 63, 1953, 39585, 587727, 6783147
Offset: 0
Examples
Row polynomials evaluated at y=1/2 equals powers of 8: 8^1 = 1 + 14/2; 8^2 = 1 + 21/2 + 210/2^2; 8^3 = 1 + 28/2 + 378/2^2 + 3220/2^3; 8^4 = 1 + 35/2 + 595/2^2 + 6475/2^3 + 49910/2^4; where A097182(y)^(n+1) has the same initial terms as the n-th row: A097182(y) = 1 + 7*x + 21*x^2 + 21*x^3 - 63*x^4 - 231*x^5 -+... A097182(y)^2 = 1 + 14y +... A097182(y)^3 = 1 + 21y + 210y^2 +... A097182(y)^4 = 1 + 28y + 378y^2 + 3220y^3 +... A097182(y)^5 = 1 + 35y + 595y^2 + 6475y^3 + 49910y^4 +... Rows begin with n=0: 1; 1, 14; 1, 21, 210; 1, 28, 378, 3220; 1, 35, 595, 6475, 49910; 1, 42, 861, 11396, 108402, 778596; 1, 49, 1176, 18326, 207074, 1791930, 12198004; 1, 56, 1540, 27608, 361018, 3647672, 29389492, 191682920; 1, 63, 1953, 39585, 587727, 6783147, 62974371, 479497491, 3019005990; ...
Links
- G. C. Greubel, Rows n = 0..50 of triangle, flattened
Programs
-
Mathematica
Table[SeriesCoefficient[2*y/((1-16*x*y) + (2*y-1)*(1-16*x*y)^(7/8)), {x, 0,n}, {y,0,k}], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 17 2019 *)
-
PARI
{T(n,k)=if(n==0,1,if(k==0,1,if(k==n, 2^n*(4^n -sum(j=0,n-1, T(n,j)/2^j)), polcoeff((Ser(vector(n,i,T(n-1,i-1)),x) +x*O(x^k))^((n+1)/n),k,x))))}
Comments