cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097181 Triangle read by rows in which row n gives coefficients of polynomial R_n(y) that satisfies R_n(1/2) = 8^n, where R_n(y) forms the initial (n+1) terms of g.f. A097182(y)^(n+1).

Original entry on oeis.org

1, 1, 14, 1, 21, 210, 1, 28, 378, 3220, 1, 35, 595, 6475, 49910, 1, 42, 861, 11396, 108402, 778596, 1, 49, 1176, 18326, 207074, 1791930, 12198004, 1, 56, 1540, 27608, 361018, 3647672, 29389492, 191682920, 1, 63, 1953, 39585, 587727, 6783147
Offset: 0

Views

Author

Paul D. Hanna, Aug 03 2004

Keywords

Comments

Row sums form A097185. Diagonal is A097183.
Ratio of g.f.s of any two adjacent diagonals equals g.f. of A097184, where the g.f.s satisfy: A097182(x*A097184(x)) = A097184(x).

Examples

			Row polynomials evaluated at y=1/2 equals powers of 8:
8^1 = 1 + 14/2;
8^2 = 1 + 21/2 + 210/2^2;
8^3 = 1 + 28/2 + 378/2^2 + 3220/2^3;
8^4 = 1 + 35/2 + 595/2^2 + 6475/2^3 + 49910/2^4;
where A097182(y)^(n+1) has the same initial terms as the n-th row:
A097182(y) = 1 + 7*x + 21*x^2 + 21*x^3 - 63*x^4 - 231*x^5 -+...
A097182(y)^2 = 1 + 14y +...
A097182(y)^3 = 1 + 21y + 210y^2 +...
A097182(y)^4 = 1 + 28y + 378y^2 + 3220y^3 +...
A097182(y)^5 = 1 + 35y + 595y^2 + 6475y^3 + 49910y^4 +...
Rows begin with n=0:
  1;
  1, 14;
  1, 21,  210;
  1, 28,  378,  3220;
  1, 35,  595,  6475,  49910;
  1, 42,  861, 11396, 108402,  778596;
  1, 49, 1176, 18326, 207074, 1791930, 12198004;
  1, 56, 1540, 27608, 361018, 3647672, 29389492, 191682920;
  1, 63, 1953, 39585, 587727, 6783147, 62974371, 479497491, 3019005990; ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[2*y/((1-16*x*y) + (2*y-1)*(1-16*x*y)^(7/8)), {x, 0,n}, {y,0,k}], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 17 2019 *)
  • PARI
    {T(n,k)=if(n==0,1,if(k==0,1,if(k==n, 2^n*(4^n -sum(j=0,n-1, T(n,j)/2^j)), polcoeff((Ser(vector(n,i,T(n-1,i-1)),x) +x*O(x^k))^((n+1)/n),k,x))))}

Formula

G.f.: A(x, y) = 2*y/((1-16*x*y) + (2*y-1)*(1-16*x*y)^(7/8)).
G.f.: A(x, y) = A097183(x*y)/(1 - x*A097184(x*y)).