A097182 G.f. A(x) has the property that the first (n+1) terms of A(x)^(n+1) form the n-th row polynomial R_n(y) of triangle A097181 and satisfy R_n(1/2) = 8^n for all n>=0.
1, 7, 21, 21, -63, -231, -15, 1521, 3073, -4319, -29631, -29631, 143361, 489345, -255, -3342591, -6684671, 9454081, 64553985, 64553985, -311689215, -1064175615, -4095, 7266627585, 14533263361, -20553129983, -140345589759, -140345589759, 677648531457, 2313636773889
Offset: 0
Keywords
Examples
A(x) = 1 + 7*x + 21*x^2 + 21*x^3 - 63*x^4 - 231*x^5 - 15*x^6 +-... For n>=0, the first (n+1) coefficients of A(x)^(n+1) forms the n-th row polynomial R_n(y) of triangle A097181: A^1 = {1, _7, 21, 21, -63, -231, -15, 1521, ...} A^2 = {1, 14, _91, 336, 609, -462, -5469, -9516, ...} A^3 = {1, 21, 210, _1288, 5103, 11655, 2160, -85590, ...} A^4 = {1, 28, 378, 3220, _18907, 77280, 199860, 153000, ...} A^5 = {1, 35, 595, 6475, 49910, _283192, 1175190, 3282870, ...} A^6 = {1, 42, 861, 11396, 108402, 778596, _4296034, 17959968, ...} These row polynomials satisfy: R_n(1/2) = 8^n: 8^1 = 1 + 14/2; 8^2 = 1 + 21/2 + 210/2^2; 8^3 = 1 + 28/2 + 378/2^2 + 3220/2^3; 8^4 = 1 + 35/2 + 595/2^2 + 6475/2^3 + 49910/2^4.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 16*x/(1-(1-2*x)^8) )); // G. C. Greubel, Sep 17 2019 -
Maple
seq(coeff(series(16*x/(1-(1-2*x)^8), x, n+2), x, n), n = 0..30); # G. C. Greubel, Sep 17 2019
-
Mathematica
CoefficientList[Series[16*x/(1-(1-2*x)^8), {x,0,30}], x] (* G. C. Greubel, Sep 17 2019 *)
-
PARI
a(n)=polcoeff(16*x/(1-(1-2*x)^8)+x*O(x^n),n,x)
-
Sage
def A097194_list(prec): P.
= PowerSeriesRing(QQ, prec) return P(16*x/(1-(1-2*x)^8)).list() A097194_list(30) # G. C. Greubel, Sep 17 2019
Formula
G.f.: A(x) = 16*x/(1-(1-2*x)^8).