A097186 Triangle read by rows in which row n gives coefficients of polynomial R_n(y) that satisfies R_n(1/3) = 3^n, where R_n(y) forms the initial (n+1) terms of g.f. A057083(y)^(n+1).
1, 1, 6, 1, 9, 45, 1, 12, 78, 360, 1, 15, 120, 675, 2970, 1, 18, 171, 1134, 5859, 24948, 1, 21, 231, 1764, 10458, 51030, 212058, 1, 24, 300, 2592, 17334, 95256, 445824, 1817640, 1, 27, 378, 3645, 27135, 165726, 861597, 3905253, 15677145, 1, 30, 465, 4950, 40590, 272646, 1557765, 7760610, 34285680, 135868590
Offset: 0
Examples
Row polynomials evaluated at y=1/3 equals powers of 3: 3^1 = 1 + 6/3; 3^2 = 1 + 9/3 + 45/3^2; 3^3 = 1 + 12/3 + 78/3^2 + 360/3^3; 3^4 = 1 + 15/3 + 120/3^2 + 675/3^3 + 2970/3^4; where A057083(y)^(n+1) has the same initial terms as the n-th row: A057083(y) = 1 + 3y + 6y^2 + 9y^3 + 9y^4 + 0y^5 - 27y^6 +... A057083(y)^2 = 1 + 6y +... A057083(y)^3 = 1 + 9y + 45y^2 +... A057083(y)^4 = 1 + 12y + 78y^2 + 360y^3 +... A057083(y)^5 = 1 + 15y + 120y^2 + 675y^3 + 2970y^4 +... Rows begin with n=0: 1; 1, 6; 1, 9, 45; 1, 12, 78, 360; 1, 15, 120, 675, 2970; 1, 18, 171, 1134, 5859, 24948; 1, 21, 231, 1764, 10458, 51030, 212058; 1, 24, 300, 2592, 17334, 95256, 445824, 1817640; 1, 27, 378, 3645, 27135, 165726, 861597, 3905253, 15677145; ...
Links
- G. C. Greubel, Rows n = 0..50 of triangle, flattened
Programs
-
Mathematica
Table[SeriesCoefficient[3y/((1-9xy) - (1-3y)*(1-9xy)^(2/3)), {x,0,n}, {y,0,k}], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 17 2019 *)
-
PARI
{T(n,k)=if(n==0,1,if(k==0,1,if(k==n, 3^n*(3^n -sum(j=0,n-1, T(n,j)/3^j)), polcoeff((Ser(vector(n,i,T(n-1,i-1)), x) +x*O(x^k))^((n+1)/n),k,x))))}
Formula
Extensions
More terms added by G. C. Greubel, Sep 17 2019
Comments