A097187 Antidiagonal sums of triangle A097186, in which the n-th row polynomial R_n(y) is formed from the initial (n+1) terms of g.f. A057083(y)^(n+1), where R_n(1/3) = 3^n for all n>=0.
1, 1, 7, 10, 58, 94, 499, 868, 4360, 7951, 38407, 72508, 339997, 659380, 3019639, 5984968, 26880052, 54249628, 239683171, 491235070, 2139947788, 4444675456, 19125212575, 40190140696, 171064560433, 363227946394, 1531088393647
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 3*x/((1-9*x^2) + (3*x-1)*(1-9*x^2)^(2/3)) )); // G. C. Greubel, Sep 17 2019 -
Maple
seq(coeff(series(3*x/((1-9*x^2) +(3*x-1)*(1-9*x^2)^(2/3)), x, n+2), x, n), n = 0..30); # G. C. Greubel, Sep 17 2019
-
Mathematica
CoefficientList[Series[3*x/((1-9*x^2) +(3*x-1)*(1-9*x^2)^(2/3)), {x, 0, 30}], x] (* G. C. Greubel, Sep 17 2019 *)
-
PARI
a(n)=polcoeff(3*x/((1-9*x^2)+(3*x-1)*(1-9*x^2+x^2*O(x^n))^(2/3)), n,x)
-
Sage
def A097187_list(prec): P.
= PowerSeriesRing(QQ, prec) return P(3*x/((1-9*x^2) + (3*x-1)*(1-9*x^2)^(2/3))).list() A097187_list(30) # G. C. Greubel, Sep 17 2019