A097192 Main diagonal of triangle A097190, in which the n-th row polynomial R_n(y) is formed from the initial (n+1) terms of g.f. A097191(y)^(n+1), where R_n(1/3) = 9^n for all n>=0.
1, 24, 612, 15912, 417690, 11027016, 292215924, 7764594552, 206732329947, 5512862131920, 147193418922264, 3934078651195056, 105236603919467748, 2817102935690367408, 75458114348849127000, 2022277464549156603600
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..695
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( 1/(1-27*x)^(8/9) )); // G. C. Greubel, Sep 17 2019 -
Maple
seq(coeff(series(1/(1-27*x)^(8/9), x, n+1), x, n), n = 0 ..20); # G. C. Greubel, Sep 17 2019
-
Mathematica
CoefficientList[Series[(1-27*x)^(-8/9), {x,0,20}], x] (* G. C. Greubel, Sep 17 2019 *)
-
PARI
a(n)=polcoeff(1/(1-27*x+x*O(x^n))^(8/9),n,x)
-
Sage
def A097192_list(prec): P.
= PowerSeriesRing(QQ, prec) return P(1/(1-27*x)^(8/9)).list() A097192_list(20) # G. C. Greubel, Sep 17 2019
Formula
G.f.: A(x) = 1/(1-27*x)^(8/9).
a(n) = (n+1)*A097193(n).
Conjecture: n*a(n) +3*(1-9*n)*a(n-1) = 0. - R. J. Mathar, Nov 16 2012