A097193 G.f. A(x) satisfies A097191(x*A(x)) = A(x) and so equals the ratio of the g.f.s of any two adjacent diagonals of triangle A097190.
1, 12, 204, 3978, 83538, 1837836, 41745132, 970574319, 22970258883, 551286213192, 13381219902024, 327839887599588, 8095123378420596, 201221638263597672, 5030540956589941800, 126392341534322287725
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( (1-(1-27*x)^(1/9))/(3*x) )); // G. C. Greubel, Sep 17 2019 -
Maple
seq(coeff(series((1-(1-27*x)^(1/9))/(3*x), x, n+2), x, n), n = 0 ..20); # G. C. Greubel, Sep 17 2019
-
Mathematica
CoefficientList[Series[(1-(1-27*x)^(1/9))/(3*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
-
PARI
a(n)=polcoeff((1-(1-27*x+x^2*O(x^n))^(1/9))/(3*x),n,x)
-
Sage
def A097193_list(prec): P.
= PowerSeriesRing(QQ, prec) return P((1-(1-27*x)^(1/9))/(3*x)).list() A097193_list(20) # G. C. Greubel, Sep 17 2019
Formula
G.f.: A(x) = (1-(1-27*x)^(1/9))/(3*x).
G.f.: A(x) = (1/x)*(series reversion of x/A097191(x)).
a(n) = A097192(n)/(n+1).
a(n) ~ 27^n / (Gamma(8/9) * n^(10/9)). - Vaclav Kotesovec, Feb 12 2014