cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097193 G.f. A(x) satisfies A097191(x*A(x)) = A(x) and so equals the ratio of the g.f.s of any two adjacent diagonals of triangle A097190.

Original entry on oeis.org

1, 12, 204, 3978, 83538, 1837836, 41745132, 970574319, 22970258883, 551286213192, 13381219902024, 327839887599588, 8095123378420596, 201221638263597672, 5030540956589941800, 126392341534322287725
Offset: 0

Views

Author

Paul D. Hanna, Aug 03 2004

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( (1-(1-27*x)^(1/9))/(3*x) )); // G. C. Greubel, Sep 17 2019
    
  • Maple
    seq(coeff(series((1-(1-27*x)^(1/9))/(3*x), x, n+2), x, n), n = 0 ..20); # G. C. Greubel, Sep 17 2019
  • Mathematica
    CoefficientList[Series[(1-(1-27*x)^(1/9))/(3*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
  • PARI
    a(n)=polcoeff((1-(1-27*x+x^2*O(x^n))^(1/9))/(3*x),n,x)
    
  • Sage
    def A097193_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P((1-(1-27*x)^(1/9))/(3*x)).list()
    A097193_list(20) # G. C. Greubel, Sep 17 2019

Formula

G.f.: A(x) = (1-(1-27*x)^(1/9))/(3*x).
G.f.: A(x) = (1/x)*(series reversion of x/A097191(x)).
a(n) = A097192(n)/(n+1).
a(n) ~ 27^n / (Gamma(8/9) * n^(10/9)). - Vaclav Kotesovec, Feb 12 2014