A097194 Row sums of triangle A097190, in which the n-th row polynomial R_n(y) is formed from the initial (n+1) terms of g.f. A097191(y)^(n+1), where R_n(1/3) = 9^n for all n>=0.
1, 25, 649, 17065, 451621, 11998801, 319623445, 8530126057, 227974775239, 6099550226965, 163340461497907, 4377292845062689, 117376545230379631, 3149059523347103293, 84522568856319875179, 2269506752111508954553
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..690
Crossrefs
Cf. A097190.
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( 3/((1-27*x) +2*(1-27*x)^(8/9)) )); // G. C. Greubel, Sep 17 2019 -
Maple
seq(coeff(series(3/((1-27*x) +2*(1-27*x)^(8/9)), x, n+1), x, n), n = 0 ..20); # G. C. Greubel, Sep 17 2019
-
Mathematica
CoefficientList[Series[3/((1-27*x) +2*(1-27*x)^(8/9)), {x,0,20}], x] (* G. C. Greubel, Sep 17 2019 *)
-
PARI
a(n)=polcoeff(3/((1-27*x) + 2*(1-27*x+x*O(x^n))^(8/9)),n,x)
-
Sage
def A097194_list(prec): P.
= PowerSeriesRing(QQ, prec) return P(3/((1-27*x) +2*(1-27*x)^(8/9))).list() A097194_list(20) # G. C. Greubel, Sep 17 2019