cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097197 Expansion of q^(-1/3) * eta(q^6)^2 / (eta(q) * eta(q^3)) in powers of q.

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 14, 20, 29, 42, 58, 80, 110, 148, 198, 264, 347, 454, 592, 764, 982, 1257, 1598, 2024, 2554, 3206, 4010, 5000, 6208, 7684, 9484, 11664, 14306, 17501, 21346, 25972, 31526, 38170, 46112, 55588, 66861, 80258, 96154, 114968, 137212, 163472
Offset: 0

Views

Author

N. J. A. Sloane, Sep 17 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + 2*x^2 + 4*x^3 + 6*x^4 + 9*x^5 + 14*x^6 + 20*x^7 + 29*x^8 + 42*x^9 + ...
G.f. = q + q^4 + 2*q^7 + 4*q^10 + 6*q^13 + 9*q^16 + 14*q^19 + 20*q^22 + 29*q^25 + ...
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 53, Eq. (25.95).
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 6, 3rd equation.

Crossrefs

Cf. A139135.

Programs

  • Mathematica
    QP = QPochhammer; s=QP[q^6]^2/(QP[q]*QP[q^3]) + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 14 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^2 / (eta(x + A) * eta(x^3 + A)), n))}; /* Michael Somos, Aug 19 2006 */

Formula

a(n) = (-1)^n * A139135(n).
Expansion of psi(q^3) / f(-q) in powers of q where psi(), f() are Ramanujan theta functions.
Euler transform of period 6 sequence [ 1, 1, 2, 1, 1, 0, ...]. - Michael Somos, Aug 19 2006
G.f.: (Sum_{k>=0} x^(3(k^2 + k)/2)) / (Product_{k>0} 1-x^k).
G.f.: (Sum_{k>0} x^(3(k^2 - k)/2)) / ((1 - x) * (1 - x^2) ...) = Product_{k>0} (1 + x^(3*k)) * (1 - x^(6*k)) / (1 - x^k).
G.f.: Product_{k>0} (1 + x^k + x^(2*k)) * (1 + x^(3*k))^2. - Michael Somos, Apr 10 2008
a(n) ~ Pi * BesselI(1, sqrt(6*n+2)*Pi/3) / (2*sqrt(18*n+6)) ~ exp(Pi*sqrt(2*n/3)) / (2^(9/4) * 3^(3/4) * n^(3/4)) * (1 + (-9/(8*Pi) + Pi/3)/sqrt(6*n) + (-5/16 - 45/(256*Pi^2) + Pi^2/108)/n). - Vaclav Kotesovec, Nov 14 2015, extended Jan 09 2017

Extensions

Edited (at the suggestion of R. J. Mathar) by N. J. A. Sloane, May 15 2008