cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A035178 a(n) = Sum_{d|n} Kronecker(-12, d) (= A134667(d)).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 1, 0, 0, 1, 2, 2, 0, 1, 0, 1, 2, 0, 2, 0, 0, 1, 1, 2, 1, 2, 0, 0, 2, 1, 0, 0, 0, 1, 2, 2, 2, 0, 0, 2, 2, 0, 0, 0, 0, 1, 3, 1, 0, 2, 0, 1, 0, 2, 2, 0, 0, 0, 2, 2, 2, 1, 0, 0, 2, 0, 0, 0, 0, 1, 2, 2, 1, 2, 0, 2, 2, 0, 1, 0, 0, 2, 0, 2, 0, 0, 0, 0, 4, 0, 2, 0, 0, 1, 2, 3, 0, 1, 0, 0, 2, 2, 0
Offset: 1

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + q^2 + q^3 + q^4 + q^6 + 2*q^7 + q^8 + q^9 + q^12 + 2*q^13 + 2*q^14 + ...
		

References

  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 346.

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(6), 1), 88); B := (A[1] - 1) / 3 + A[2]; B; /* Michael Somos, Aug 04 2015 */
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ -12, d], { d, Divisors[ n]}]]; (* Michael Somos, Jun 24 2011 *)
    a[ n_] := If[ n < 1, 0, Times @@ (Which[ # < 5, 1, Mod[#, 6] == 5, 1 - Mod[#2, 2], True, #2 + 1 ] & @@@ FactorInteger@n)]; (* Michael Somos, Aug 04 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q^(1/2)]^3 / EllipticTheta[ 2, 0, q^(3/2)] - 4) / 12, {q, 0, n}]; (* Michael Somos, Aug 04 2015 *)
    a[n_] := DivisorSum[n, KroneckerSymbol[-12, #]&]; Array[a, 105] (* Jean-François Alcover, Dec 01 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -12, d)))}; /* Michael Somos, Apr 18 2004 */
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / ((1 - X) * (1 - kronecker( -12, p) * X))) [n])}; /* Michael Somos, Jun 24 2011 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A) * eta(x^2 + A)^6 / (eta(x^6 + A)^2 * eta(x + A)^3) - 1) / 3, n))}; /* Michael Somos, Aug 11 2009 */
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, 1, p%6==5, 1-e%2, 1+e)))}; /* Michael Somos, Aug 04 2015 */
    

Formula

Moebius transform is period 6 sequence [ 1, 0, 0, 0, -1, 0, ...]. - Michael Somos, Feb 14 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (u1 - u2) * (u1 - u2 - u3 + u6) - (u2 -u6) * (1 + 3*u6). - Michael Somos, May 29 2005
Dirichlet g.f.: zeta(s) * L(chi,s) where chi(n) = Kronecker( -12, n). Sum_{n>0} a(n) / n^s = Product_{p prime} 1 / ((1 - p^-s) * (1 - Kronecker( -12, p) * p^-s)). - Michael Somos, Jun 24 2011
a(n) is multiplicative with a(p^e) = 1 if p=2 or p=3, a(p^e) = 1+e if p == 1 (mod 6), a(p^e) = (1 + (-1)^e)/2 if p == 5 (mod 6).
G.f.: Sum_{k>0} (x^k + x^(3*k)) / (1 + x^(2*k) + x^(4*k)) = Sum_{k>=0} x^(6*k + 1) / (1 - x^(6*k + 1)) - x^(6*k + 5) / (1 - x^(6*k + 5)). - Michael Somos, Feb 14 2006
a(n) = |A093829(n)| = -(-1)^n * A137608(n) = a(2*n) = a(3*n). a(6*n + 1) = A097195(n). a(6*n + 5) = 0.
From Michael Somos, Aug 11 2009: (Start)
3 * a(n) = A107760(n) unless n=0. a(2*n + 1) = A033762(n). a(3*n + 1) = A033687(n). a(4*n + 1) = A112604(n). a(4*n + 3) = A112605(n).
a(8*n + 1) = A112606(n). a(8*n + 3) = A112608(n). a(8*n + 5) = 2 * A112607(n). a(8*n + 7) = 2 * A112608(n). a(12*n + 1) A123884(n). a(12*n + 7) = 2 * A121361(n).
a(24*n + 1) = A131961(n). a(24*n + 7) = 2 * A131962(n). a(24*n + 13) = 2 * A131963(n). a(24*n + 19) = 2 * A131964(n). (End)
Expansion of (psi(q)^3 / psi(q^3) - 1) / 3 in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Aug 04 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(3)) = 0.906899... (A093766). - Amiram Eldar, Nov 16 2023

Extensions

Definition edited by Michael Somos, Aug 11 2009

A139135 Expansion of psi(-q^3) / f(q) where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, 2, -4, 6, -9, 14, -20, 29, -42, 58, -80, 110, -148, 198, -264, 347, -454, 592, -764, 982, -1257, 1598, -2024, 2554, -3206, 4010, -5000, 6208, -7684, 9484, -11664, 14306, -17501, 21346, -25972, 31526, -38170, 46112, -55588, 66861, -80258, 96154, -114968, 137212
Offset: 0

Views

Author

Michael Somos, Apr 10 2008

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Examples

			q - q^4 + 2*q^7 - 4*q^10 + 6*q^13 - 9*q^16 + 14*q^19 - 20*q^22 + 29*q^25 + ...
		

Crossrefs

A139136(3*n + 1) = - a(n). A139137(3*n + 1) = 2 * a(n).
Apart from signs, same as A097197.

Programs

  • Mathematica
    A139135[n_] := SeriesCoefficient[(QPochhammer[q]* QPochhammer[q^3]*QPochhammer[q^4]*QPochhammer[q^12])/(QPochhammer[q^2]^3 *QPochhammer[q^6]), {q, 0, n}]; Table[A139135[n], {n, 0, 50}] (* G. C. Greubel, Oct 05 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A) / (eta(x^2 + A)^3 * eta(x^6 + A)), n))}

Formula

Expansion of q^(-1/3) * eta(q) * eta(q^3) * eta(q^4) * eta(q^12) / (eta(q^2)^3 * eta(q^6)) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (108 t)) = 3^(-1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A139136.
a(n) ~ (-1)^n * exp(Pi*sqrt(2*n/3)) / (2^(9/4) * 3^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 16 2017

A122792 Expansion of eta(q^2)^2/(eta(q)eta(q^3)) in powers of q.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 4, 2, 0, 6, 4, 0, 10, 6, 0, 16, 9, 0, 24, 14, 0, 36, 20, 0, 52, 29, 0, 74, 42, 0, 104, 58, 0, 144, 80, 0, 198, 110, 0, 268, 148, 0, 360, 198, 0, 480, 264, 0, 634, 347, 0, 832, 454, 0, 1084, 592, 0, 1404, 764, 0, 1808, 982, 0, 2316, 1257, 0, 2952, 1598, 0
Offset: 0

Views

Author

Michael Somos, Sep 11 2006

Keywords

Crossrefs

A098151(n)=a(3n). A097197(n)=a(3n+1).
Cf. A293306.

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q^2]^2/(QP[q]*QP[q^3]) + O[q]^70; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)^2/eta(x+A)/eta(x^3+A), n))}

Formula

Euler transform of period 6 sequence [ 1, -1, 2, -1, 1, 0, ...].
G.f.: Product_{k>0} (1-x^k)^2/(1+x^k+x^(2k)). a(3n+2)=0.
G.f.: Product_{i>0} 1/(1 + Sum_{j>0} (-1)^j*j*q^(j*i)). - Seiichi Manyama, Oct 08 2017

A252706 Expansion of phi(-q) / phi(-q^3) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 0, 2, -2, 0, 4, -4, 0, 6, -8, 0, 10, -12, 0, 16, -18, 0, 24, -28, 0, 36, -40, 0, 52, -58, 0, 74, -84, 0, 104, -116, 0, 144, -160, 0, 198, -220, 0, 268, -296, 0, 360, -396, 0, 480, -528, 0, 634, -694, 0, 832, -908, 0, 1084, -1184, 0, 1404, -1528, 0
Offset: 0

Views

Author

Michael Somos, Apr 04 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*q + 2*q^3 - 2*q^4 + 4*q^6 - 4*q^7 + 6*q^9 - 8*q^10 + 10*q^12 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] / EllipticTheta[ 4, 0, q^3], {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^6 + A) / (eta(x^2 + A) * eta(x^3 + A)^2), n))};

Formula

Expansion of f(-q, -q^2) / f(q, q^2) in powers of q where f(,) is Ramanujan's two-variable theta function.
Euler transform of period 6 sequence [ -2, -1, 0, -1, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 3^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A101195.
G.f.: Product_{k>0} (1 - x^k + x^(2*k)) / (1 + x^k + x^(2*k)).
a(n) = (-1)^n * A139137(n).
Convolution inverse is A098151.
a(3*n + 2) = 0. a(3*n) = A098151(n). a(3*n + 1) = -2 * A097197(n).
Showing 1-4 of 4 results.