cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097229 Triangle read by rows: number of Motzkin paths by length and by number of humps.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 7, 1, 1, 15, 5, 1, 31, 18, 1, 1, 63, 56, 7, 1, 127, 160, 34, 1, 1, 255, 432, 138, 9, 1, 511, 1120, 500, 55, 1, 1, 1023, 2816, 1672, 275, 11, 1, 2047, 6912, 5264, 1205, 81, 1, 1, 4095, 16640, 15808, 4797, 481, 13
Offset: 0

Views

Author

David Callan, Aug 01 2004

Keywords

Comments

T(n,k) = number of Motzkin paths of length n containing exactly k humps. (A hump is an upstep followed by 0 or more flatsteps followed by a downstep.)

Examples

			Example: Table begins
  n|
  -+------------------
  0|1
  1|1
  2|1,   1
  3|1,   3
  4|1,   7,   1
  5|1,  15,   5
  6|1,  31,  18,  1
  7|1,  63,  56,  7
  8|1, 127, 160, 34, 1
T(5,2) = 5 counts FUDUD, UDFUD, UDUDF, UDUFD, UFDUD.
		

Crossrefs

Column k=2 is A001793.
Cf. A001263.

Programs

  • Mathematica
    a[n_, k_]/;k<0 || k>n/2 := 0; a[n_, 0]/;n>=0 := 1; a[n_, k_]/;1<=k<=n := a[n, k] = a[n-1, k] + Sum[a[n-r, k-1], {r, 2, n}]+Sum[a[r-2, j]a[n-r, k-j], {r, 2, n}, {j, k}] (* This recurrence counts a(n, k) by first return to ground level. *)
  • Maxima
    N(n,k):=(binomial(n,k-1)*binomial(n,k))/n;
    T(n,k):=if k=0 then 1 else sum(binomial(n, 2*i)*N(i,k),i,1,n); /* Vladimir Kruchinin, Jan 08 2022 */

Formula

G.f.: ((-1 + 2*x - 2*x^2 + x^2*y + ((1 - 2*x)^2 + 2*x^2*(-1 + 2*x - 2*x^2)*y + x^4*y^2)^(1/2))/(2*(-1 + x)*x^2) = Sum_{n>=0, k>=0} a(n, k) x^n y^k satisfies x^2 A(x, y)^2 - ( x^2(1-y)/(1-x) + (1-x) )A(x, y) + 1 = 0.
T(n,k) = Sum_{i=1..n} binomial(n, 2*i)*N(i,k), T(n,0)=1, where N(n,k) is the triangle of Narayana numbers A001263. - Vladimir Kruchinin, Jan 08 2022