A097229 Triangle read by rows: number of Motzkin paths by length and by number of humps.
1, 1, 1, 1, 3, 1, 7, 1, 1, 15, 5, 1, 31, 18, 1, 1, 63, 56, 7, 1, 127, 160, 34, 1, 1, 255, 432, 138, 9, 1, 511, 1120, 500, 55, 1, 1, 1023, 2816, 1672, 275, 11, 1, 2047, 6912, 5264, 1205, 81, 1, 1, 4095, 16640, 15808, 4797, 481, 13
Offset: 0
Examples
Example: Table begins n| -+------------------ 0|1 1|1 2|1, 1 3|1, 3 4|1, 7, 1 5|1, 15, 5 6|1, 31, 18, 1 7|1, 63, 56, 7 8|1, 127, 160, 34, 1 T(5,2) = 5 counts FUDUD, UDFUD, UDUDF, UDUFD, UFDUD.
Links
- Yan Zhuang, A generalized Goulden-Jackson cluster method and lattice path enumeration, Discrete Mathematics 341.2 (2018): 358-379; arXiv:1508.02793 [math.CO], 2015-2018.
Programs
-
Mathematica
a[n_, k_]/;k<0 || k>n/2 := 0; a[n_, 0]/;n>=0 := 1; a[n_, k_]/;1<=k<=n := a[n, k] = a[n-1, k] + Sum[a[n-r, k-1], {r, 2, n}]+Sum[a[r-2, j]a[n-r, k-j], {r, 2, n}, {j, k}] (* This recurrence counts a(n, k) by first return to ground level. *)
-
Maxima
N(n,k):=(binomial(n,k-1)*binomial(n,k))/n; T(n,k):=if k=0 then 1 else sum(binomial(n, 2*i)*N(i,k),i,1,n); /* Vladimir Kruchinin, Jan 08 2022 */
Formula
G.f.: ((-1 + 2*x - 2*x^2 + x^2*y + ((1 - 2*x)^2 + 2*x^2*(-1 + 2*x - 2*x^2)*y + x^4*y^2)^(1/2))/(2*(-1 + x)*x^2) = Sum_{n>=0, k>=0} a(n, k) x^n y^k satisfies x^2 A(x, y)^2 - ( x^2(1-y)/(1-x) + (1-x) )A(x, y) + 1 = 0.
T(n,k) = Sum_{i=1..n} binomial(n, 2*i)*N(i,k), T(n,0)=1, where N(n,k) is the triangle of Narayana numbers A001263. - Vladimir Kruchinin, Jan 08 2022
Comments