A097246 Replace factors of n that are squares of a prime with the prime succeeding this prime.
1, 2, 3, 3, 5, 6, 7, 6, 5, 10, 11, 9, 13, 14, 15, 9, 17, 10, 19, 15, 21, 22, 23, 18, 7, 26, 15, 21, 29, 30, 31, 18, 33, 34, 35, 15, 37, 38, 39, 30, 41, 42, 43, 33, 25, 46, 47, 27, 11, 14, 51, 39, 53, 30, 55, 42, 57, 58, 59, 45, 61, 62, 35, 27, 65, 66, 67, 51, 69, 70, 71, 30, 73
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Table[Times @@ Map[#1^#2 & @@ # &, Partition[#, 2, 2] &@ Flatten[ FactorInteger[n] /. {p_, e_} /; e >= 2 :> {If[OddQ@ e, {p, 1}, {1, 1}], {NextPrime@ p, Floor[e/2]}}]], {n, 73}] (* Michael De Vlieger, Mar 18 2017 *)
-
PARI
A097246(n) = { my(f=factor(n)); prod(i=1, #f~, (nextprime(f[i, 1]+1)^(f[i,2]\2))*((f[i,1])^(f[i,2]%2))); }; \\ Antti Karttunen, Mar 18 2017
-
Python
from sympy import factorint, nextprime from operator import mul def a(n): f=factorint(n) return 1 if n==1 else reduce(mul, [(nextprime(i)**int(f[i]/2))*(i**(f[i]%2)) for i in f]) # Indranil Ghosh, May 15 2017
-
Scheme
(definec (A097246 n) (if (= 1 n) 1 (* (A000244 (A004526 (A007814 n))) (A000079 (A000035 (A007814 n))) (A003961 (A097246 (A064989 n)))))) (define (A097246 n) (* (A003961 (A000188 n)) (A007913 n))) ;; Antti Karttunen, Nov 15 2016
Formula
Multiplicative with p^e -> NextPrime(p)^floor(e/2) * p^(e mod 2), where p prime and NextPrime(p)=A000040(A049084(p)+1).
a(m*n) <= a(m)*a(n); a(m*n) = a(m)*a(n) iff m and n are coprime;
a(A000040(k)^n) = A000040(k+1)^floor(n/2)*A000040(k)^(n mod 2); a(2^n) = 3^floor(n/2) * (1 + n mod 2);
a(A000040(k)*A002110(n)/A002110(k-1)) = A000040(k+1)*A002110(n)/A002110(k) for k <= n, see also A097250.
From Antti Karttunen, Nov 15 2016: (Start)
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (p^4-p^2)/(p^4-nextprime(p)) = 0.4059779303..., where nextprime is A151800. - Amiram Eldar, Nov 29 2022