A097248 a(n) is the eventual stable point reached when iterating k -> A097246(k), starting from k = n.
1, 2, 3, 3, 5, 6, 7, 6, 5, 10, 11, 5, 13, 14, 15, 5, 17, 10, 19, 15, 21, 22, 23, 10, 7, 26, 15, 21, 29, 30, 31, 10, 33, 34, 35, 15, 37, 38, 39, 30, 41, 42, 43, 33, 7, 46, 47, 15, 11, 14, 51, 39, 53, 30, 55, 42, 57, 58, 59, 7, 61, 62, 35, 15, 65, 66, 67, 51, 69, 70, 71, 30, 73, 74, 21
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Table[FixedPoint[Times @@ Map[#1^#2 & @@ # &, Partition[#, 2, 2] &@ Flatten[FactorInteger[#] /. {p_, e_} /; e >= 2 :> {If[OddQ@ e, {p, 1}, {1, 1}], {NextPrime@ p, Floor[e/2]}}]] &, n], {n, 75}] (* Michael De Vlieger, Mar 18 2017 *)
-
PARI
A097246(n) = { my(f=factor(n)); prod(i=1, #f~, (nextprime(f[i,1]+1)^(f[i,2]\2))*((f[i,1])^(f[i,2]%2))); }; A097248(n) = { my(k=A097246(n)); while(k<>n, n = k; k = A097246(k)); k; }; \\ Antti Karttunen, Mar 18 2017
-
Python
from sympy import factorint, nextprime from operator import mul def a097246(n): f=factorint(n) return 1 if n==1 else reduce(mul, [(nextprime(i)**int(f[i]/2))*(i**(f[i]%2)) for i in f]) def a(n): k=a097246(n) while k!=n: n=k k=a097246(k) return k # Indranil Ghosh, May 15 2017
-
Scheme
;; with memoization-macro definec ;; Two implementations: (definec (A097248 n) (if (not (zero? (A008683 n))) n (A097248 (A097246 n)))) (definec (A097248 n) (if (zero? (A277885 n)) n (A097248 (A277886 n)))) ;; Antti Karttunen, Nov 15 2016
Formula
From Antti Karttunen, Nov 15 2016: (Start)
A007913(a(n)) = a(n).
(End)
From Peter Munn, Feb 06 2020: (Start)
a(1) = 1; a(p) = p, for prime p; a(m*k) = A331590(a(m), a(k)).
a(A225546(n)) = a(n).
(End)
From Antti Karttunen, Feb 22-25 & Mar 01 2020: (Start)
(End)
Extensions
Name changed and the original definition moved to the Comments section by Antti Karttunen, Nov 15 2016
Comments