cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097326 Largest integer m such that m*n has the same decimal digit length as n.

Original entry on oeis.org

9, 4, 3, 2, 1, 1, 1, 1, 1, 9, 9, 8, 7, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9, 9
Offset: 1

Views

Author

Rick L. Shepherd, Aug 04 2004

Keywords

Comments

For any positive base B >= 2 the corresponding sequence contains only terms from 1 to B-1 inclusive so the corresponding sequence for binary is all 1's (A000012).

Examples

			a(12)=8 as 12 and 8*12=96 both have two decimal digits while 9*12=108 has three.
		

Crossrefs

Cf. A061601 (analog for decimal m+n), A035327 (analog for binary m+n), A097327.
Cf. A055642.

Programs

  • Mathematica
    limn[n_]:=Module[{k=9,len=IntegerLength[n]},While[IntegerLength[k*n] > len, k--];k]; Array[limn,110] (* Harvey P. Dale, Apr 28 2018 *)
    Table[Ceiling[10^IntegerLength[n]/n] - 1, {n, 100}] (* Paolo Xausa, Nov 06 2024 *)
  • PARI
    a(n) = my(m=1, sn=#Str(n)); while (#Str(m*n) <= sn, m++); m-1; \\ Michel Marcus, Oct 05 2021
  • Python
    def a(n): return (10**len(str(n))-1)//n
    print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Oct 05 2021
    

Formula

a(n) = A097327(n) - 1.
a(n) = floor((10^A055642(n) - 1)/n). - Michael S. Branicky, Oct 05 2021