A097327 Least positive integer m such that m*n has greater decimal digit length than n.
10, 5, 4, 3, 2, 2, 2, 2, 2, 10, 10, 9, 8, 8, 7, 7, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 10, 10, 10
Offset: 1
Examples
a(12) = 9 since 12 has two decimal digits and 9*12 = 108 has three (but 8*12 = 96 has only two).
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Table[Ceiling[10^IntegerLength[n]/n], {n, 100}] (* Paolo Xausa, Nov 02 2024 *)
-
PARI
a(n) = my(m=1, sn=#Str(n)); while (#Str(m*n) <= sn, m++); m; \\ Michel Marcus, Oct 05 2021
-
Python
def a(n): return (10**len(str(n))-1)//n + 1 print([a(n) for n in range(1, 103)]) # Michael S. Branicky, Oct 05 2021
Formula
a(n) = A097326(n) + 1.
a(n) = ceiling(10^A055642(n)/n). - Michael S. Branicky, Oct 05 2021
Comments