A097326 Largest integer m such that m*n has the same decimal digit length as n.
9, 4, 3, 2, 1, 1, 1, 1, 1, 9, 9, 8, 7, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9, 9
Offset: 1
Examples
a(12)=8 as 12 and 8*12=96 both have two decimal digits while 9*12=108 has three.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
limn[n_]:=Module[{k=9,len=IntegerLength[n]},While[IntegerLength[k*n] > len, k--];k]; Array[limn,110] (* Harvey P. Dale, Apr 28 2018 *) Table[Ceiling[10^IntegerLength[n]/n] - 1, {n, 100}] (* Paolo Xausa, Nov 06 2024 *)
-
PARI
a(n) = my(m=1, sn=#Str(n)); while (#Str(m*n) <= sn, m++); m-1; \\ Michel Marcus, Oct 05 2021
-
Python
def a(n): return (10**len(str(n))-1)//n print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Oct 05 2021
Formula
a(n) = A097327(n) - 1.
a(n) = floor((10^A055642(n) - 1)/n). - Michael S. Branicky, Oct 05 2021
Comments