cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A097335 a(n) = Sum_{k=0..n} C(n-k, floor(k/2))*3^k.

Original entry on oeis.org

1, 4, 4, 13, 49, 85, 202, 643, 1408, 3226, 9013, 21685, 50719, 131836, 327001, 783472, 1969996, 4913005, 11964253, 29694217, 73911262, 181589539, 448837492, 1114038850, 2748344701, 6787882129, 16814231779, 41549334088, 102640273249
Offset: 0

Views

Author

Paul Barry, Aug 05 2004

Keywords

Crossrefs

Formula

G.f. : (1+3x)/(1-x-9x^3); a(n)=a(n-1)+9a(n-3).

A097336 Sum k=0..n, C(n-k, floor(k/2))4^k.

Original entry on oeis.org

1, 5, 5, 21, 101, 181, 517, 2133, 5029, 13301, 47429, 127893, 340709, 1099573, 3145861, 8597205, 26190373, 76524149, 214079429, 633125397, 1857511781, 5282782645, 15412788997, 45132977493, 129657499813, 376262123765
Offset: 0

Views

Author

Paul Barry, Aug 05 2004

Keywords

Comments

The sequence sum{k=0..n, C(n-k,floor(k/2))r^k} has g.f. (1+rx)/(1-x-r^2x^3).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,16},{1,5,5},30] (* Harvey P. Dale, Sep 15 2011 *)

Formula

G.f. : (1+4x)/(1-x-16x^3); a(n)=a(n-1)+16a(n-3).

A098581 Expansion of (1+2*x+4*x^2)/(1-x-8*x^4).

Original entry on oeis.org

1, 3, 7, 7, 15, 39, 95, 151, 271, 583, 1343, 2551, 4719, 9383, 20127, 40535, 78287, 153351, 314367, 638647, 1264943, 2491751, 5006687, 10115863, 20235407, 40169415, 80222911, 161149815, 323033071, 644388391, 1286171679, 2575370199
Offset: 0

Views

Author

Paul Barry, Sep 16 2004

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,3,7,7]; [n le 4 select I[n] else Self(n-1) + 8*Self(n-4): n in [1..30]]; // G. C. Greubel, Feb 03 2018
  • Mathematica
    CoefficientList[Series[(1+2x+4x^2)/(1-x-8x^4),{x,0,40}],x] (* or *) LinearRecurrence[{1,0,0,8},{1,3,7,7},40] (* Harvey P. Dale, Feb 04 2015 *)
  • PARI
    x='x+O('x^30); Vec((1+2*x+4*x^2)/(1-x-8*x^4)) \\ G. C. Greubel, Feb 03 2018
    

Formula

a(n) = a(n-1) + 8*a(n-4).
a(n) = Sum_{k=0..n} binomial(n-k, floor(k/3)) * 2^k.
Showing 1-3 of 3 results.