A097364 Triangle read by rows, 0 <= k < n: T(n,k) = number of partitions of n such that the differences between greatest and smallest parts are k.
1, 2, 0, 2, 1, 0, 3, 1, 1, 0, 2, 3, 1, 1, 0, 4, 2, 3, 1, 1, 0, 2, 5, 3, 3, 1, 1, 0, 4, 4, 6, 3, 3, 1, 1, 0, 3, 6, 6, 7, 3, 3, 1, 1, 0, 4, 6, 10, 7, 7, 3, 3, 1, 1, 0, 2, 9, 10, 12, 8, 7, 3, 3, 1, 1, 0, 6, 6, 15, 14, 13, 8, 7, 3, 3, 1, 1, 0, 2, 11, 15, 20, 16, 14, 8, 7, 3, 3, 1, 1, 0, 4, 10, 21, 22, 24, 17
Offset: 1
Examples
Triangle starts: 01: 1 02: 2 0 03: 2 1 0 04: 3 1 1 0 05: 2 3 1 1 0 06: 4 2 3 1 1 0 07: 2 5 3 3 1 1 0 08: 4 4 6 3 3 1 1 0 09: 3 6 6 7 3 3 1 1 0 10: 4 6 10 7 7 3 3 1 1 0 11: 2 9 10 12 8 7 3 3 1 1 0 12: 6 6 15 14 13 8 7 3 3 1 1 0 13: 2 11 15 20 16 14 8 7 3 3 1 1 0 14: 4 10 21 22 24 17 ... - _Joerg Arndt_, Feb 22 2014 T(8,0)=4: 8=4+4=2+2+2+2=1+1+1+1+1+1+1+1, T(8,1)=4: 3+3+2=2+2+2+1+1=2+2+1+1+1+1=2+1+1+1+1+1+1, T(8,2)=6: 5+3=4+2+2=3+3+1+1=3+2+2+1=3+2+1+1+1=3+1+1+1+1+1, T(8,3)=3: 4+3+1=4+2+1+1=4+1+1+1+1, T(8,4)=3: 6+2=5+2+1=5+1+1+1, T(8,5)=1: 6+1+1, T(8,6)=1: 7+1, T(8,7)=0; Sum_{k=0..7} T(8,k) = 4+4+6+3+3+1+1+0 = 22 = A000041(8).
Links
- Reinhard Zumkeller, Rows n = 1..60 of triangle, flattened
- G. E. Andrews, M. Beck and N. Robbins, Partitions with fixed differences between largest and smallest parts, arXiv:1406.3374 [math.NT], 2014.
Crossrefs
Programs
-
Haskell
a097364 n k = length [qs | qs <- pss !! n, last qs - head qs == k] where pss = [] : map parts [1..] where parts x = [x] : [i : ps | i <- [1..x], ps <- pss !! (x - i), i <= head ps] a097364_row n = map (a097364 n) [0..n-1] a097364_tabl = map a097364_row [1..] -- Reinhard Zumkeller, Feb 01 2013
-
Maple
g:=sum(x^i/(1-x^i)/product(1-t*x^j,j=1..i-1),i=1..50): gser:=simplify(series(g,x=0,18)): for n from 1 to 15 do P[n]:=coeff(gser,x^n) od: 1; for n from 2 to 15 do seq(coeff(P[n],t,j),j=0..n-1) od; # yields sequence in triangular form # Emeric Deutsch, Feb 23 2006
-
Mathematica
rows = 14; max = rows+2; col[k0_ /; k0 > 0] := col[k0] = Sum[x^(2*k + k0) / Product[(1-x^(k+j)), {j, 0, k0}], {k, 1, Ceiling[max/2]}] + O[x]^max // CoefficientList[#, x]&; col[0] := Table[Switch[n, 1, 0, 2, 1, , n - 1 - col[1][[n]]], {n, 1, Length[col[1]]}]; Table[col[k][[n+2]], {n, 0, rows-1 }, {k, 0, n}] // Flatten (* _Jean-François Alcover, Sep 10 2017, after Alois P. Heinz *)
Formula
G.f.: Sum_{i>=1} x^i/((1 - x^i)*Product_{j=1..i-1} (1 - t*x^j)). - Emeric Deutsch, Feb 23 2006
Comments