A097393 Emirpimes: numbers n such that n and its reversal are distinct semiprimes.
15, 26, 39, 49, 51, 58, 62, 85, 93, 94, 115, 122, 123, 129, 143, 155, 158, 159, 169, 177, 178, 183, 185, 187, 203, 205, 221, 226, 265, 289, 302, 314, 319, 321, 326, 327, 329, 335, 339, 341, 355, 381, 394, 398, 413, 415, 437, 493, 497, 502, 511, 514, 533
Offset: 1
Examples
26 is a semiprime, as it is 2 * 13, and so is 62 = 2 * 31. 26 and 62 are therefore both in the sequence.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Emirpimes
Programs
-
Maple
isA097393 := proc(n) local R ; R := digrev(n) ; if R <> n then if numtheory[bigomega](R) = 2 and numtheory[bigomega](n) = 2 then return true; else false; end if; else false; end if; end proc: for n from 1 to 500 do if isA097393(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Apr 05 2012
-
Mathematica
Cases[{#, IntegerReverse@#} & /@ DeleteCases[Range@5000, ?PalindromeQ], {?(PrimeOmega@# == 2 &) ..}][[All,1]] (* Hans Rudolf Widmer, Jan 07 2024 *)
-
PARI
rev(n)=subst(Polrev(digits(n)),'x,10) issemi(n)=bigomega(n)==2 list(lim)=my(v=List(),r);forprime(p=2,lim\2,forprime(q=2,min(lim\p,p),r=rev(p*q);if(issemi(r)&&r!=p*q,listput(v,p*q))));Set(v) \\ Charles R Greathouse IV, Jan 27 2015
-
Python
from sympy import factorint from itertools import islice def sp(n): f = factorint(n); return sum(f[p] for p in f) == 2 def ok(n): r = int(str(n)[::-1]); return r != n and sp(n) and sp(r) print([k for k in range(534) if ok(k)]) # Michael S. Branicky, Jul 03 2022
Comments