cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097393 Emirpimes: numbers n such that n and its reversal are distinct semiprimes.

Original entry on oeis.org

15, 26, 39, 49, 51, 58, 62, 85, 93, 94, 115, 122, 123, 129, 143, 155, 158, 159, 169, 177, 178, 183, 185, 187, 203, 205, 221, 226, 265, 289, 302, 314, 319, 321, 326, 327, 329, 335, 339, 341, 355, 381, 394, 398, 413, 415, 437, 493, 497, 502, 511, 514, 533
Offset: 1

Views

Author

Keywords

Comments

Computed by Eric W. Weisstein, Aug 13 2004.

Examples

			26 is a semiprime, as it is 2 * 13, and so is 62 = 2 * 31. 26 and 62 are therefore both in the sequence.
		

Crossrefs

Equals A085751 \ A046328.

Programs

  • Maple
    isA097393 := proc(n)
        local R ;
        R := digrev(n) ;
        if R <> n then
            if numtheory[bigomega](R) = 2 and numtheory[bigomega](n) = 2 then
                return true;
            else
                false;
            end if;
          else
            false;
        end if;
    end proc:
    for n from 1 to 500 do
        if isA097393(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Apr 05 2012
  • Mathematica
    Cases[{#, IntegerReverse@#} & /@ DeleteCases[Range@5000, ?PalindromeQ], {?(PrimeOmega@# == 2 &) ..}][[All,1]] (* Hans Rudolf Widmer, Jan 07 2024 *)
  • PARI
    rev(n)=subst(Polrev(digits(n)),'x,10)
    issemi(n)=bigomega(n)==2
    list(lim)=my(v=List(),r);forprime(p=2,lim\2,forprime(q=2,min(lim\p,p),r=rev(p*q);if(issemi(r)&&r!=p*q,listput(v,p*q))));Set(v) \\ Charles R Greathouse IV, Jan 27 2015
    
  • Python
    from sympy import factorint
    from itertools import islice
    def sp(n): f = factorint(n); return sum(f[p] for p in f) == 2
    def ok(n): r = int(str(n)[::-1]); return r != n and sp(n) and sp(r)
    print([k for k in range(534) if ok(k)]) # Michael S. Branicky, Jul 03 2022