A097401 Largest achievable determinant of a 3 X 3 matrix whose elements are 9 distinct nonnegative integers chosen from the range 0..n.
332, 528, 796, 1148, 1596, 2152, 2828, 3636, 4588, 5696, 6972, 8428, 10076, 11928, 13996, 16292, 18828, 21616, 24668, 27996, 31612, 35528, 39756, 44308, 49196, 54432, 60028, 65996, 72348, 79096, 86252, 93828, 101836, 110288, 119196, 128572
Offset: 8
Examples
a(10)=796 because no larger determinant of a 3 X 3 matrix b(j,k) with distinct elements 0 <= b(j,k) <= 10, j=1..3, k=1..3 can be built than det((10,5,1), (2,9,7), (6,0,8)) = 796.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 8..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
I:=[332, 528, 796, 1148]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 25 2012
-
Mathematica
LinearRecurrence[{4,-6,4,-1},{332,528,796,1148},40] (* Vincenzo Librandi, Jun 25 2012 *)
-
PARI
a(n)=2*n^3-18*n^2+68*n-84 \\ Charles R Greathouse IV, Oct 07 2015
Formula
An optimal choice and arrangement is of the following form: det((n, n-5, 1), (2, n-1, n-3), (n-4, 0, n-2)) = 2*(n^3 - 9*n^2 + 34*n - 42). There are 35 other equivalent arrangements corresponding to permutations of rows and columns.
a(n) = 2*n^3 - 18*n^2 + 68*n - 84.
G.f.: 4*x^8*(83 - 200*x + 169*x^2 - 49*x^3)/(1-x)^4. - Colin Barker, Mar 29 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 25 2012