A097463 Let P(i) = i-th prime. To get a(n), factor P(n)-1 as a product of primes, then concatenate the exponents.
0, 1, 2, 11, 101, 21, 4, 12, 10001, 2001, 111, 22, 301, 1101, 100000001, 200001, 1000000001, 211, 11001, 1011, 32, 110001, 1000000000001, 30001, 51, 202, 1100001, 1000000000000001, 23, 4001, 1201, 101001, 3000001, 110000001, 200000000001
Offset: 1
Examples
3-1=2^1, so a(2)=1. 5-1=2^2, so a(3)=2. 7-1=2^1*3^1, so a(4)=11. 23=(2^1)*(11^1)+1. So a(9) = 10001. 37 = 36 + 1 = 2^2*3^2 + 1, so 37 becomes 22 (a=2,b=2).
Crossrefs
Cf. A037916.
Programs
-
PARI
{forprime(p=2,150,f=factor(p-1);j=1;q=2;s="0";while(j<=matsize(f)[1], if(q==f[j,1],s=concat(s,f[j,2]);j++,s=concat(s,0));q=nextprime(q+1));print1(eval(s),","))} \\ Klaus Brockhaus, Apr 25 2005
Extensions
More terms from Klaus Brockhaus, Apr 25 2005
a(9) corrected by Dennis (tuesdayist(AT)juno.com), Mar 30 2006
Comments