A097469 Decimal expansion of growth constant C for dimer model on square grid.
1, 3, 3, 8, 5, 1, 5, 1, 5, 1, 9, 7, 6, 0, 9, 6, 7, 6, 6, 9, 3, 8, 1, 9, 5, 9, 0, 2, 0, 1, 8, 5, 1, 3, 5, 3, 7, 0, 6, 4, 3, 5, 3, 6, 9, 7, 1, 2, 7, 9, 1, 1, 3, 1, 4, 6, 4, 1, 2, 3, 4, 7, 8, 6, 6, 2, 2, 3, 9, 1, 1, 3, 3, 0, 0, 7, 9, 8, 0, 9, 7, 8, 6, 4, 6, 4, 8, 7, 3, 8, 4, 6, 1, 7, 7, 4, 4
Offset: 1
Examples
1.33851515197609676693819590201851353706435369712791131464123...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.8.3 and 5.23.1, pp. 63, 407.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- F. Ardila and R. P. Stanley, Tilings, arXiv:math/0501170 [math.CO], 2005.
- P. W. Kasteleyn, The Statistics of Dimers on a Lattice, Physica, 27 (1961), 1209-1225.
- J. Propp, Enumeration of matchings: problems and progress, in New Perspectives in Algebraic Combinatorics
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:=RealField(); Exp(Catalan(R)/Pi(R)); // G. C. Greubel, Aug 25 2018
-
Mathematica
RealDigits[Exp[Catalan/Pi], 10, 100][[1]] (* G. C. Greubel, Aug 25 2018 *)
-
PARI
default(realprecision, 100); exp(Catalan/Pi) \\ G. C. Greubel, Aug 25 2018
Formula
Equals e^(G/Pi), with G = A006752 (Catalan's constant).
Equals exp((1/Pi^2) * Integral_{x=0..Pi/2, y=0..Pi/2} log(4*cos(x)^2 + 4*cos(y)^2) dx dy). - Vaclav Kotesovec, Jan 04 2021
Extensions
Terms a(14) onward corrected by G. C. Greubel, Aug 26 2018