cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A097749 Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows. Let A(n,k) be the triangle in A097474. Then T(n,k) is defined by the orthogonality relations Sum_{j=i..r} T(r,j)*A(j,i)*2^-floor((j+3)/2) = 0 if i != r, = (2r+1)!/(r!*2^r) if i = r.

Original entry on oeis.org

2, 1, 2, -1, 10, 6, 5, -35, 105, 30, -63, 420, -882, 1260, 210, 1576, -10395, 20790, -20790, 17325, 1890, -68409, 450450, -891891, 849420, -495495, 270270, 20790, 4729726, -31126095, 61486425, -57972915, 32207175, -12297285, 4729725, 270270
Offset: 0

Views

Author

N. J. A. Sloane, Sep 21 2004

Keywords

Examples

			Triangle begins:
2
1 2
-1 10 6
5 -35 105 30
-63 420 -882 1260 210
		

References

  • H. W. Gould, Power sum identities for arbitrary symmetric arrays, SIAM J. Appl. Math., 17 (1969), 307-316.

Crossrefs

Cf. A097474, A097801. Row sums give A001147. Is the left-hand edge A004193?

Extensions

More terms from Sean A. Irvine, Mar 25 2013

A097716 Left-hand edge of triangle in A097474.

Original entry on oeis.org

1, -1, 2, -17, 124, -2764, 43688, -1859138, 51236656, -3550889296, 151107728672, -15494138893232, 941930695305664, -133994296272170944, 11024086088089751168, -2077570618897716831248, 222290021402867410844416, -53603997631397508980982016, 7234385689981722178901729792
Offset: 0

Views

Author

N. J. A. Sloane, Sep 21 2004

Keywords

Extensions

More terms from Emeric Deutsch, Dec 24 2004

A097578 a(n) = (2*n+1)*2^floor((n+1)/2).

Original entry on oeis.org

1, 6, 10, 28, 36, 88, 104, 240, 272, 608, 672, 1472, 1600, 3456, 3712, 7936, 8448, 17920, 18944, 39936, 41984, 88064, 92160, 192512, 200704, 417792, 434176, 901120, 933888, 1933312, 1998848, 4128768, 4259840, 8781824, 9043968, 18612224, 19136512, 39321600
Offset: 0

Views

Author

N. J. A. Sloane, Sep 21 2004

Keywords

Crossrefs

Right-hand edge of triangle in A097474.

Programs

  • Maple
    seq(seq((4*k+2*j+1)*2^(k+j), j=[0,1]),k=0..50); # Robert Israel, Feb 28 2017
  • Mathematica
    LinearRecurrence[{0,4,0,-4},{1,6,10,28},40] (* Harvey P. Dale, Sep 08 2021 *)

Formula

G.f.: (1+6*x+6*x^2+4*x^3)/(1-2*x^2)^2. - Robert Israel, Feb 28 2017
Showing 1-3 of 3 results.