A097486 A relationship between Pi and the Mandelbrot set. a(n) = number of iterations of z^2 + c that c-values -0.75 + x*i go through before escaping, where x = 10^(-n). Lim_{n->inf} a(n) * x = Pi.
3, 33, 315, 3143, 31417, 314160, 3141593, 31415927, 314159266, 3141592655, 31415926537, 314159265359, 3141592653591
Offset: 0
References
- Peitgen, Juergens and Saupe: Chaos and Fractals (Springer-Verlag 1992) pages 859-862.
- Peitgen, Juergens and Saupe: Fractals for the Classroom (Springer-Verlag 1992) Part two, pages 431-434.
Links
- Dave Boll, Pi and the Mandelbrot set.
- Boris Gourevitch, Pi et les fractales, Ensemble de Mandelbrot - Dave Boll - Gerald Edgar.
- Hans Havermann, Computing pi in seahorse valley. - _Hans Havermann_, Feb 12 2010
- Aaron Klebanoff, Pi in the Mandelbrot set (proof).
- Robert Munafo, Seahorse Valley. - _Robert Munafo_, Jan 25 2010
Programs
-
Magma
A097486:=function(n) c:=10^-n*Sqrt(-1)-3/4; z:=0; a:=0; while Modulus(z)lt 2 do z:=z^2+c; a+:=1; end while; return a; end function; // Jason Kimberley
-
Maple
Digits:=2^8: f:=proc(z, c, k) option remember; f(z, c, k-1)^2+c; end; a:=proc(n) local epsilon, c, k; epsilon:=10.^(-n): c:=-0.75+epsilon*I: f(0, c, 0):=0: for k do if abs(f(0, c, k))>2 then break; fi; od: return(k); end; seq(a(n), n=0..7); # Martin Renner, Feb 24 2018
-
Mathematica
$MinPrecision = 128; Do[c = SetPrecision[.1^n * I - .75, 128]; z = 0; a = 0; While[Abs[z] < 2, z = z^2 + c; a++ ]; Print[a], {n, 0, 8}] (* Hans Havermann, Oct 20 2010 *)
-
PARI
A097486(n)=local(a,c,z);c=0.1^n*I-0.75;z=0;a=0;while(abs(z)<2.0,{z=z^2+c;a=a+1});a \\ Robert Munafo, Jan 25 2010
Extensions
Links corrected by Gerald McGarvey, Dec 16 2009
Corrected and extended by Robert Munafo, Jan 25 2010
Name corrected by Martin Renner, Feb 24 2018
Comments