A097600 A Binet like formula using the Akiyama-Thurston tile roots for a Minimal Pisot theta0 sequence.
1, 0, 1, 2, 2, 3, 4, 5, 7, 10, 13, 18, 23, 31, 41, 55, 73, 97, 129, 170, 226, 299, 397, 526, 696, 923, 1223, 1620, 2146, 2843, 3766, 4989, 6610, 8756, 11599, 15366, 20356, 26966, 35723, 47323, 62689, 83046, 110013, 145736, 193059, 255749, 338796
Offset: 1
Links
- Tian-Xiao He, Peter J.-S. Shiue, Zihan Nie, Minghao Chen, Recursive sequences and Girard-Waring identities with applications in sequence transformation, Electronic Research Archive (2020) Vol. 28, No. 2, 1049-1062.
Crossrefs
Cf. A001644.
Programs
-
Mathematica
NSolve[x^3-x-1==0, x] r1=-0.662358978622373051`-0.562279512062301289` I r2=-0.662358978622373051`+0.562279512062301289` I r3=1.32471795724474605` (* Binet like formula for the Minimal Pisot*) f[n_]=(r3^n-((r2^n)+(r2^(5*n))))/(r3-r2-r2^5) a=Table[Floor[Re[f[n]]], {n, 1, 50}]
Comments