cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A097620 Numbers having more prime factors than their neighbors together.

Original entry on oeis.org

12, 16, 18, 24, 30, 32, 36, 40, 42, 48, 54, 60, 64, 72, 84, 88, 90, 96, 102, 108, 112, 120, 128, 132, 138, 140, 144, 150, 156, 160, 162, 168, 180, 192, 198, 200, 210, 216, 224, 228, 234, 240, 250, 252, 256, 264, 270, 272, 280, 282, 288, 294, 300, 304, 306, 308
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 17 2004

Keywords

Examples

			A001222(64) = A001222(2^6) = 6, A001222(64-1) = A001222(3*3*7) = 3, A001222(64+1) = A001222(5*13) = 2, and 6 > 3+2, therefore 64 is a term.
		

Crossrefs

Subsequence of A097619.
Cf. A001222.

Programs

  • Python
    from sympy import primeomega
    def ok(n): return primeomega(n) > primeomega(n-1) + primeomega(n+1)
    print([k for k in range(2, 309) if ok(k)]) # Michael S. Branicky, Dec 16 2021

Formula

{k: A001222(k) > A001222(k-1) + A001222(k+1)}. - Michael S. Branicky, Dec 16 2021

A076764 n such that Omega(n-1) < Omega(n) < Omega(n+1), where Omega(m) = the number of prime factors of m, counting multiplicity.

Original entry on oeis.org

62, 63, 74, 188, 194, 195, 207, 242, 255, 275, 278, 279, 314, 363, 374, 398, 399, 404, 422, 423, 455, 458, 483, 494, 495, 524, 539, 614, 615, 662, 663, 674, 692, 728, 734, 735, 747, 758, 759, 764, 782, 783, 854, 867, 890, 927, 935, 975, 998, 999
Offset: 1

Views

Author

Joseph L. Pe, Nov 13 2002

Keywords

Examples

			Omega(61) = 1 < Omega(62) = 2 < Omega(63) = 3, so 62 is a 1-apex of Omega.
		

Crossrefs

Programs

  • Maple
    Res:= NULL: a:= numtheory:-bigomega(1): b:= numtheory:-bigomega(2):
    for n from 3 to 1001 do
      c:= numtheory:-bigomega(n);
      if a < b and b < c then Res:= Res, n-1 fi;
      a:= b; b:= c;
    od:
    Res; # Robert Israel, Oct 28 2018
  • Mathematica
    Select[Range[3, 10^3], Omega[ # - 1] < Omega[ # ] < Omega[ # + 1] &]
    Flatten[Position[Partition[PrimeOmega[Range[1000]],3,1],?(Min[ Differences[ #]]>0&),{1},Heads->False]]+1 (* _Harvey P. Dale, Nov 28 2015 *)

Extensions

Edited by Robert Israel, Oct 28 2018
Showing 1-2 of 2 results.